Frank Zöllner

Vitruvs Proportionsfigur

Quellenkritische Studien zur Kunstliteratur im 15. und 16. Jahrhundert

Wernersche Verlagsgesellschaft Worms
Manuskripte zur Kunstwissenschaft
in der Wernerschen Verlagsgesellschaft

Herausgegeben von Ferdinand Werner

Gedruckt mit Unterstützung der Universität Hamburg
VORWORT

Die hier vorgetragenen Analysen zu Vitruvs Proportionsfigur widersprechen anderen Ansichten, die im Zusammenhang jener Figur formuliert worden sind. Dieser Umstand wird gelegentlich in den einzelnen Abschnitten, hauptsächlich aber in der Einleitung sowie im ersten Kapitel erörtert, das gleichzeitig ein Versuch ist, die Problematik der vorliegenden Arbeit aus einem mit dem Namen Aby Warburg verknüpften kulturwissenschaftlichen Ansatz zu entwickeln.

Für die finanzielle Unterstützung danke ich dem Hamburger Senat (Aby Warburg Stipendium), der Studienstiftung des deutschen Volkes (Promotionsstipendium) und meinen Eltern, denen diese Arbeit gewidmet ist.

Hamburg/London, im Mai 1987
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>INHALTSVERZEICHNIS</td>
<td></td>
</tr>
<tr>
<td>VORWORT</td>
<td></td>
</tr>
<tr>
<td>INHALTSVERZEICHNIS</td>
<td></td>
</tr>
<tr>
<td>EINLEITUNG</td>
<td></td>
</tr>
<tr>
<td>I. RUDOLF WITTKOWER: ARCHITECTURAL PRINCIPLES</td>
<td></td>
</tr>
<tr>
<td>1. Wittkower und das Warburg Institut</td>
<td>8</td>
</tr>
<tr>
<td>2. Warburg und Vitruvs Proportionsfigur</td>
<td>10</td>
</tr>
<tr>
<td>3. Die »Praxis der Symbolsetzung«</td>
<td>13</td>
</tr>
<tr>
<td>4. Architectural Principles</td>
<td>16</td>
</tr>
<tr>
<td>5. Anthropomorphe Veranschaulichungen</td>
<td>18</td>
</tr>
<tr>
<td>II. VITRUVS PROPORTIONSGEBRUTAN</td>
<td></td>
</tr>
<tr>
<td>1. Metrologie</td>
<td>23</td>
</tr>
<tr>
<td>2. Metrologie, Malerei und Skulptur</td>
<td>26</td>
</tr>
<tr>
<td>3. Brüche</td>
<td>29</td>
</tr>
<tr>
<td>4. Der Maßstab</td>
<td>31</td>
</tr>
<tr>
<td>5. Anwendungsmöglichkeiten</td>
<td>35</td>
</tr>
<tr>
<td>6. Modus und mensura</td>
<td>38</td>
</tr>
<tr>
<td>7. Symmetria und eurythmia</td>
<td>39</td>
</tr>
<tr>
<td>8. Manasara - anstatt einer Zusammenfassung</td>
<td>41</td>
</tr>
<tr>
<td>III. VITRUV IN SPÄTANTIKE UND MITTELALTER</td>
<td></td>
</tr>
<tr>
<td>1. Versuch einer Rezeptionsgeschichte</td>
<td>44</td>
</tr>
<tr>
<td>2. Vitruv in der Architektur des Mittelalters</td>
<td>47</td>
</tr>
<tr>
<td>3. Vitruvs Proportionsfigur im Mittelalter</td>
<td>51</td>
</tr>
<tr>
<td>4. Weitere Zeugnisse des Mittelalters</td>
<td>55</td>
</tr>
<tr>
<td>5. Atlas</td>
<td>60</td>
</tr>
<tr>
<td>6. Zusammenfassung</td>
<td>62</td>
</tr>
<tr>
<td>IV. THEORETIKER UND PRAKTIKER IM QUATTROCENTO</td>
<td></td>
</tr>
<tr>
<td>1. Mariano Taccola und Michele Savonarola</td>
<td>63</td>
</tr>
<tr>
<td>2. Lorenzo Ghiberti</td>
<td>65</td>
</tr>
<tr>
<td>3. Antonio Averlino Filarete</td>
<td>68</td>
</tr>
<tr>
<td>4. Francesco di Giorgio Martini</td>
<td>72</td>
</tr>
<tr>
<td>5. Ikonologische Versuche</td>
<td>76</td>
</tr>
<tr>
<td>V. LEONARDO DA VINCI</td>
<td></td>
</tr>
<tr>
<td>1. Leonaros Zeichnung</td>
<td>77</td>
</tr>
<tr>
<td>2. Leonardo und Vitruv</td>
<td>80</td>
</tr>
<tr>
<td>3. Leonaros Proportionsstudien</td>
<td>82</td>
</tr>
<tr>
<td>4. Die Proportionsstudien und die Zeichnung in Venedig</td>
<td>85</td>
</tr>
<tr>
<td>VI. ALBRECHT DÜRER</td>
<td></td>
</tr>
<tr>
<td>1. Erste Proportionsstudien</td>
<td>88</td>
</tr>
<tr>
<td>2. Dürers konstruierte Figuren</td>
<td>89</td>
</tr>
<tr>
<td>3. Die normative Richtigkeit</td>
<td>94</td>
</tr>
<tr>
<td>4. Dürer und die Gelehrten</td>
<td>97</td>
</tr>
<tr>
<td>VII. LUCA PACIOLI</td>
<td></td>
</tr>
<tr>
<td>1. Ein Leben als Lehrer</td>
<td>104</td>
</tr>
<tr>
<td>2. Paciolis Proportionsbegriff</td>
<td>104</td>
</tr>
<tr>
<td>3. Paciolis Anthropomorphismus</td>
<td>107</td>
</tr>
<tr>
<td>4. Der Mensch als Sinnbild der Architektur</td>
<td>111</td>
</tr>
<tr>
<td>Titel</td>
<td>Seite</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>VIII. VITRUVSTUDIEN UND VITRUVAUSGABEN</td>
<td>118</td>
</tr>
<tr>
<td>1. Die Vitruvstudien des Quattrocento</td>
<td>118</td>
</tr>
<tr>
<td>2. Fra Giovanni Giocondo</td>
<td>120</td>
</tr>
<tr>
<td>3. Sagredo, Ryff, Martin und Goujon</td>
<td>122</td>
</tr>
<tr>
<td>4. Cesariano, Philandrier und Barbaro</td>
<td>126</td>
</tr>
<tr>
<td>IX. CESARE CESARIANO</td>
<td>127</td>
</tr>
<tr>
<td>1. Cesarianos Comaker Vitruv von 1521</td>
<td>128</td>
</tr>
<tr>
<td>2. Zirkel und Richtscheit</td>
<td>129</td>
</tr>
<tr>
<td>3. Maß, Mensch und Metrologie</td>
<td>132</td>
</tr>
<tr>
<td>4. Cesariano als Architekt</td>
<td>139</td>
</tr>
<tr>
<td>X. GUILLAUME PHILANDRIER</td>
<td>144</td>
</tr>
<tr>
<td>1. Eine klerikale Karriere</td>
<td>144</td>
</tr>
<tr>
<td>2. Humanist und Antiquar</td>
<td>145</td>
</tr>
<tr>
<td>3. Philandrier und Vitruvs Proportionsfigur</td>
<td>147</td>
</tr>
<tr>
<td>4. Der Kleriker als Architekt</td>
<td>151</td>
</tr>
<tr>
<td>XI. DANIELE BARBARO</td>
<td>155</td>
</tr>
<tr>
<td>1. Barbaros Kunsthewie</td>
<td>156</td>
</tr>
<tr>
<td>2. Barbaros Proporsionstheorie</td>
<td>161</td>
</tr>
<tr>
<td>3. Barbaros Proportion und Vitruvs Maß</td>
<td>164</td>
</tr>
<tr>
<td>4. Barbaro als Mäzen</td>
<td>167</td>
</tr>
<tr>
<td>5. Zusammenfassung - Cesariano, Philandrier, Barbaro</td>
<td>168</td>
</tr>
<tr>
<td>6. Nachbemerkung</td>
<td>169</td>
</tr>
<tr>
<td>XII. FRANCESCO GIORGI</td>
<td>170</td>
</tr>
<tr>
<td>1. Francesco Giorgi</td>
<td>171</td>
</tr>
<tr>
<td>2. Das Memorandum für S.Francesco della Vigna</td>
<td>172</td>
</tr>
<tr>
<td>3. De harmonia mundi</td>
<td>173</td>
</tr>
<tr>
<td>4. Giorgi und die christliche Kabbala</td>
<td>175</td>
</tr>
<tr>
<td>5. Mikrokosmos</td>
<td>177</td>
</tr>
<tr>
<td>6. Giorgi und Vitruvs Proportionsfigure</td>
<td>182</td>
</tr>
<tr>
<td>XIII. AGRIPPA VON NETTESHEIM</td>
<td>184</td>
</tr>
<tr>
<td>1. De occulta philosophia</td>
<td>185</td>
</tr>
<tr>
<td>2. Mikrokosmos I (1510 und 1516)</td>
<td>188</td>
</tr>
<tr>
<td>3. Mikrokosmos II (1533)</td>
<td>190</td>
</tr>
<tr>
<td>4. Der Mikrokosmos und Vitruvs Proportionsfigur</td>
<td>193</td>
</tr>
<tr>
<td>5. Agrippa und Leonardo</td>
<td>196</td>
</tr>
<tr>
<td>6. Agrippa und Francesco Giorgi</td>
<td>198</td>
</tr>
<tr>
<td>7. Agrippa und Vitruv</td>
<td>200</td>
</tr>
<tr>
<td>8. Zusammenfassung</td>
<td>201</td>
</tr>
<tr>
<td>SCHLUSS</td>
<td>203</td>
</tr>
<tr>
<td>1. Folgerungen</td>
<td>203</td>
</tr>
<tr>
<td>2. Ausblick</td>
<td>205</td>
</tr>
<tr>
<td>APPENDIX 1: Vitruv 3.1-7.</td>
<td>206</td>
</tr>
<tr>
<td>APPENDIX 2: Griechische und Römische Metrologie</td>
<td>209</td>
</tr>
<tr>
<td>APPENDIX 3: Vitruv in Spätantike und Mittelalter</td>
<td>210</td>
</tr>
<tr>
<td>APPENDIX 4: Atlas</td>
<td>213</td>
</tr>
<tr>
<td>APPENDIX 5: Guillaume Philandrier</td>
<td>214</td>
</tr>
<tr>
<td>APPENDIX 6: Andere Figure</td>
<td>215</td>
</tr>
<tr>
<td>APPENDIX 7: Pietro Antonio Barca</td>
<td>217</td>
</tr>
<tr>
<td>BIBLIOGRAPHIE</td>
<td>218</td>
</tr>
<tr>
<td>ABBILDUNGSVERZEICHNIS</td>
<td>242</td>
</tr>
<tr>
<td>ABBILDUNGEN</td>
<td>243</td>
</tr>
</tbody>
</table>
EINLEITUNG

Das Problem . . .

... und seine Folgen

1 RUDOLF WITTKOWER, Architectural Principles in the Age of Humanism (Studies of the Warburg Institute 19), London 1949.
3 Vgl. J. S. ACKERMAN, in: Art Bulletin 33.1951, S.195-200; S.195/196: [...] Wittkower’s book illustrates one of the fundamental virtues of the Warburg tradition, transferring to the study of architecture a historical attitude that has proven its worth in other fields of the Fine Arts. [...] By far the most common theorem to be depicted was that the body of a man with arms and legs extended fits into the two most perfect geometrical figures, the circle and square. Wittkower convincingly demonstrates that this »Homo ad circulum (quadratum)« has a far deeper
Urteile in anderen Publikationen, in denen Wittkowers Verwechslung der Vitruvischen Proportionsfigur mit Francesco Giorgis Atlasdarstellung⁴ und andere Fehleinschätzungen wiederholt wurden.⁵

significance than is likely to be attributed to it by proponents of the Burckhardian school. His passages from Pacioli and Zorzi indicate that the symbol was taken as a metaphor for a conception of the harmony of the human body as the microcosmic figuration of the harmony of the universe.

⁵ Vgl. K. CLARK, The Nude. A Study of Ideal Art, London 1956, S.11-15, S.13: It is impossible to exaggerate what this simple-looking proposition meant to the men of the Renaissance. To them it was far more than a convenient rule: it was the foundation of a whole philosophy. Taken together with the musical scale of Pythagoras, it seemed to offer exactly that link [...] between an organic and a geometric basis of beauty which was (and perhaps remains) the philosopher's stone of aesthetics.
⁷ Vgl. E. BATTISTI/L. SALERNO, Proportion, in: Encyclopedia of World Art, Bd.11, London 1966, Sp.716-738, Sp.719, 732, Sp.735 und Sp.725: The reading of Vitruvius and explicit cosmologic reference to the four parts of the universe led to a revival of the motif of the homo ad quadratum, probably at the Carolingian court, as magnificently exemplified in the crucifix with outstretched arms and erect head whose width is equal to its height.
⁹ Vgl. D. KÖNIGSBERGER, Renaissance Man and Creative Thinking. A History of Concepts of Harmony 1400-1700, Hassocks 1979, S.36: The ideal shapes, the circle, the square and others, were taken over by Alberti from Vitruvius as well, and with these shapes were associated the microcosmic quality of the proportions of the human figure.
¹⁰ Vgl. J. MACQUEEN, Numerology. Theory and Outline History of a Literary Mode, Edinburg 1985, S.1: Vitruvius [...] maintained that a vital relationship existed between architectural proportions and those of the human body, which in turn echoed the devine proportions of the universe. He took for granted the notion, universal from antiquity to the Renaissance and beyond, that man as microcosm is himself an image, even a summary, of macrocosmic perfections.
¹¹ Vgl. G. P. CONGER, Theories of Macrocosms and Microcosms in the History of Philosophy, New York 1967 (zuerst 1922), S.26: Vitruvius [...] compared the symmetry of the human body not only to the universe, but also to a temple.
¹² Vgl. E. PANOFSKY, Renaissance and Renascences in Western Art, New York 1969 (zuerst 1960), S.179: It is, however, significant that the post-Carolingian Writers of the Middle-Ages mostly limit themselves to repeating Vitruvius’ general statements about human proportions, which they tend to interpret in a cosmological rather than aesthetic sense.
inzwischen neben physiologisch nicht nachvollziehbaren Aussagen13, und im blinden Glauben an die symbolische Macht der Bilder erscheinen schließlich Verallgemeinerungen gröberster Art als Wahrheiten höchster Ordnung.14

Ein Beispiel

Der wohl beliebteste Gegenstand symbolischer und anderer Interpretationen ist Leonardo da Vincis Studie zur Proportionsfigur Vitruvs (Abb. 1); bereits 1929 wurde sie - den von Fritz Saxl publizierten Ansichten Aby Warburgs folgend - als rein symbolische Repräsentation harmonischer Zusammenhänge bezeichnet.15 Nach dem Erscheinen von Wittkovers *Architectural Principles* folgten weitere Exegeten, die jene Studie als Beginn des Kinos feierten16, als Ausdruck des Klassizismus oder schöpferischen Kern der Schönheit17, als Mikrokosmos oder als beinahe spirituelles Wesen, dessen Glieder die perfekte Geometrie von Gottes Schöpfung ewig berührten und so Leonardo’s Zentralbaupläne heimsuchten.18 Leonardos Figur konnte ebenso das »Emblem der westlichen Zivilisation« schlechthin werden19 wie das Symbol sinnlicher Vergnügen in einer St.Pauli-Bar oder das werbewirksame Sinnbild für die Gesundheitskost einer Londoner Kaufhaushalte.20

13 Vgl. E. RAWSON, *Intellectual Life in Late Roman Republic*, London 1985, S.187: The navel is the natural centre, and if a man lies on his back with hands and feet outspread, a circle can be described around him, and similarly a square within it [Hervorhebung F. Z.].

17 Vgl. ebd., S.159: Ma già in questa immagine è il germe dell’elemento dinamico che in breve sarà accolto nell’architettura del Cinquecento come fattore di bellezza.

19 Vgl. P. MELLER, Quello che Leonardo non ha scritto sulla figura umana: dall’uomo di Vitruvio alla Leda, in: Arte Lombarda 67.1983, S.117-133, S.118: Per ragioni diversi nel contesto di idee più generali sul macrocosmo e il microcosmo, per l’aspetto di finitezza del diagramma e per la suggestione del lucidus ordo, questa immagine è diventata tanto celebre e viene riprodotta, e sfruttata infinite volte, quale emblema della civiltà occidentale stessa.

20 Die Namen beider Lokalitäten sind dem Verfasser bekannt.
I. RUDOLF WITTCKOWER: ARCHITECTURAL PRINCIPLES

1. Wittkower und das Warburg Institute

³ Journal of the Warburg Institute, volume 1, 1937, Number 1, July 1, published by The Warburg Institute. Editors: Edgar Wind and Rudolf Wittkower.

8 C. G. Heise, Persönliche Erinnerungen an Aby Warburg, Hamburg 1959, S.56.

Einladung Warburgs folgend, verbrachte Wittkower im selben Jahr einige Tage in Hamburg. Vier Jahre später, 1933, trat er in eine dauerhafte Beziehung mit dem inzwischen nach London umgezogenen Warburg Institute, diesmal nicht als Gast, sondern als Kurator der photographischen Sammlung.11

2. Warburg und Vitruvs Proportionsfigur

Warburgs frühes Interesse an Vitruv wird durch seine eigene Ausgabe von \textit{De architectura} belegt, die einige vor der Jahrhundertwende niedergeschriebene Bemerkungen und Literaturhinweise enthält. Ihn interessierte damals besonders die philologische Problematik jenes Abschnitts, in dem Vitruv von den Maßen des menschlichen Körpers handelt.14 Etliche Jahre später, nachdem er 1924 aus psychiatrischer Behandlung entlassen worden war, wandte er sich erneut der Proportionsfigur Vitruvs zu, doch nun unter ideengeschichtlichen und erkennnistheoretischen Gesichtspunkten. Im 1923 erschienenen zweiten Band der \textit{Zeitschrift für Indologie und Iranistik} hatte er eine Bemerkung über den Menschen als Mikrokosmos gefunden, die aus dem sogenannten Bundahisn,
einer Kompilation alpersischer Weisheit stammt. Der betreffende Abschnitt, den Warburg sofort mit Vitruv in Verbindung brachte, lautet dort in deutscher Übersetzung: »Ebenso wie die Welt gerade so breit wie lang ist: geradeso ist auch der Mensch, jeder einzelne, so groß wie seine eigene Armmweite (?).« Warburg versah diesen Satz mit der Bemerkung »vgl. fig. b[ei] Vitruvius.«
Auf diese Notiz muß er bald darauf Fritz Saxl aufmerksam gemacht haben, denn dieser schreibt in dem 1926 abgeschlossenen zweiten Band seines »Verzeichnis' astrophysikalischer Handschriften«:
Warburg hat nun weiter als erster die Wichtigkeit dieser Stelle für die Geschichte der Kunsttheorie erkannt. Die Vorstellung nämlich, daß die Länge des Menschen mit seiner Armweite übereinstimmt, hat, losgelöst von der Elementarlehre, ihren Platz im rein ästhetischen Denken der Antike. [...] Warburgs Arnamhe, daß wir im Bundahism einen Niederschlag derselben orientalischen Spekulation vor uns haben, deren graciösisiert-ästhetische Formulierung Vitruv überliert, ist unbestreitbar. Wie bei den Arabern und noch bei der hl. Hildegard war ihr Gegenstand die Zusammensetzung der Elemente des Alls und die Proportion seiner Glieder [...] und sie entsprang einem einheitlichen religiösen Denken, von dem sich die naturphilosophische wie das ästhetische losgelöst haben.«
Für Warburg war also Vitruv's Figur die »graciösizt-ästhetische Formulierung« einer ursprünglich orientalischen Spekulation über den Menschen als Mikrokosmos, eine Form, welche die Kunsttheorie beeinflußt habe und, wie Saxl weiter schreibt, neben dem religiösen Aspekt »auch das rein ästhetisch spekulierende Denken« repräsentiere.
Zusätzliche Informationen über Warburgs Verständnis der Vitruvischen Proportionsfigur finden sich in den Notizen zur zweiten Tafel (B) des möglicherweise schon 1924 begonnenen, doch schließlich unvollendet gebliebenen Bilderatlas. Weiteren Aufschluß gibt eine handschriftliche Bemerkung zu Saxls Vortrag über den Mikrokosmos in mittelalterlichen Bildern.
Das Mnemosyne betitelte Projekt des Bilderatlas war ein Versuch, die Funktion und Wirkung in der Antike entstandener »Pathosformeln« mithilfe einer umfangreichen und kommentierten Bilderreihe zu demonstrieren. Diese Bilderreihe diente im besonderen der - wie Warburg sich ausdrückte - »Untersuchung der Funktion vorgeprägter antiker Ausdruckswerte bei der Darstellung bewegten Lebens in der Kunst der europäischen Renaissance«.
Die Tafeln dieser Reihe sind in verschiedenen Versionen, doch mit nur wenigen

16 SAXL, Verzeichnis astrologischer Handschriften, S.44-45.
19 Kulturwissenschaftliche Bibliothek Warburg, Tagebuch, Bd.9, 1929, S.57 (6.10.1929); vgl. auch SAXL/BING, Bericht 1930 und 1931, S.5-6.

»A« (Abb. 2) zeigt eine holländische Himmelsdarstellung mit zoomorph und anthropomorphen Sternbildern, eine topographische Karte der kulturellen Zentren Europas und des Nahen Ostens sowie den Stammbaum der Medici. Die Erklärung hierfür lautet:

A. Verschiedene Systeme von Relationen, in die der Mensch eingestellt ist, kosmisch, irdisch, genealogisch. Ineinssetzung aller dieser Relationen im magischen Denken, denn Sonderung von Abstammung, Geburtsort und kosmischer Situation setzt schon eine Denkleistung voraus. 1) Orientierung 2) Austausch 3) Soziale Einordnung.22

Das Schaubild »B« (Abb. 3) präsentiert neben der im Zentrum stehenden Vitruvstudie Leonardo da Vincis und einer Proportionszeichnung Albrecht Dürers eine Reihe von Mikrokosmos-, Aderlaß- und Zodiakmännchen sowie eine chiromantische Darstellung. Warburg kommentiert diese Kollage folgendermaßen:

B. Verschiedene Grade der Abtragung des kosmischen Systems auf den Menschen. Harmonikale Entsprechung. Spätere Reduktion der Harmonie auf abstrakte Geometrie statt auf kosmisch bedingte (Lionardo).23

Die letzte der einleitenden Tafeln (Abb. 4) schließlich zeigt die Planetenbahnen nach Keplers \textit{Mysterium cosmographicum} von 1621, eine Karte des Sonnensystems, die Kinder des Planeten Mars, dessen Umlaufbahn sowie »Graf Zeppelins über Newyork«. Der Text hierzu lautet:

\begin{itemize}
\end{itemize}

Sie [d.i. die Kulturwissenschaftliche Bibliothek Warburg] bedeutet in dem noch ungeschriebenen Handbuch der Selbsterziehung des Menschengeschlechts ein Kapitel, das den Titel haben könnte: »Von der mythisch-fürchtenden zur wissenschaftlich-errechnenden Orientierung des Menschen sich selbst und dem Kosmos gegenüber.«27

Im »Geschäfte der Orientierung« demonstriert die erste Tafel (A) die Einbindung des Menschen in Himmel, Erde und Genealogie, wobei gleichzeitig auf die Bedeutung und Verbreitung kultureller Formen und Inhalte hingewiesen wird. Dann (B) deutet Warburg an, wie sich der Mensch zu den Zusammenhängen des Kosmos zu verhalten versucht, nämlich magisch-anthropomorphistisch einerseits und rational-geometrisch andererseits. Im letzten der drei einleitenden Schaubilder (C) schließlich verbildlicht er sowohl die marxianisch-magische Aneignung des Weltraums als auch seine Eroberung durch die beobachtende Wissenschaft (Kepler) und die technisch fortgeschrittene Luftfahrt (Zeppelin).

3. Die »Praxis der Symbolsetzung«

Warburgs Vorgehen in den einleitenden Tafeln seines Bilderatlas ist nicht historisch und analytisch, sondern interpretativ; Bilder und die Art ihrer Zusammenstellung stehen symbolisch für die einseitig magische und andererseits rationale Orientierung des Menschen in verschiedenen kulturellen Zusammenhängen, um deren Darstellung es in dem unvollendeten Projekt ging. Die ersten Schaubilder dienen einem generellen, symbolischen Verständnis von Geschichte oder, wie Warburg sich ausdrückte, der »Erkenntnistheorie und Praxis der Symbolsetzung«.28 Warburg geht über den Standpunkt des nur registrierenden Historikers hinaus und versucht, durch seine Bilderreihen Sinnbezüge für sich selbst und für den Betrachter herzustellen. Symbole und Zeichen sind dabei nicht nur Gegenstände oder bloße Artefakte des Kultur-

24 »Grüne Mappes«, ebd., S.2.
25 Kulturwissenschaftliche Bibliothek Warburg, Tagebuch, Bd.9, 1929 (11.10.1929), S.69.
26 Ebd., S.57 (6.10.1929).
28 Kulturwissenschaftliche Bibliothek Warburg, Tagebuch, Bd.9, 1929 (20.10.1929), S.83.
wissenschaftlers, sondern auch Mittel zur Erkenntnis selbst.29 In diesem Sinne war eine bildliche Darstellung sowohl der wissenschaftliche Gegenstand des Kulturhistorikers als auch das Symbol einer geschichtlichen Epoche - etwa wenn eine Doppelherme des Apollo-Dionysoos für Warburg das »Wesen der Antike« symbolisierte.30 D. h. neben der Bedeutung, die eine Doppel-Herme für den antiken Betrachter haben konnte, stand eine weitere Bedeutungsebene, deren Bestimmung dem Historiker obliegt. Diese »symbolische«, vom Kulturwissenschaftler rekonstruierte oder auch nur konstituierte Bedeutung mußte keineswegs mit derjenigen übereinstimmen, die dem antiken Rezipienten geläufig war.31

Warburgs einleitende Tafeln präsentieren anschauliches Material für eine veränderliche32 Schau und Interpretation von Geschichte, und zwar einer Geschichte, die vor dem Subjekt der Gegenwart nicht haltmacht.33 Dieser erkenntnistheoretisch motivierten Symbolsetzung steht in Warburgs einleitenden Tafeln des Bilderatlas jener »Denkraum« zur Seite34, der sowohl durch »begrifflich sondernliche Bezeichnung«35 als auch durch mythisch-magische Assoziation entsteht. Damit hat das Denkraum schaffende Symbol, das in der Polarität zwischen Rationalität und Magie steht36, eineinsteils die phylogenetische und erkenntnistheoretische Aufgabe, dem Menschen die rationale Distanz zu den Objekten seiner Welt zu verschaffen, andernteils aber auch den psychologischen und ontogenetischen Zweck, dem Individuum den Abstand zur eigenen Irrationalität zu sichern:

Der Begriff Orientierung hat fuer Warburg im Anschluss an Kants Aufsatz "Was heisst sich im Denken orientieren?" sehr allgemeinen Charakter. Er ist ihm der Ueberbegriff fuer jede bewusste Beziehungnahme des Menschen als eines

31 Vgl. hierzu Panofskys Ausführungen zur Ikonologie; PANOFSKY, Studies in Iconology, S.8: »The discovery and interpretation of [...] 'symbolical values' (which are generally unknown to the artist himself and may even emphatically differ from what he consciously intended to express) is the object of what we may call 'iconography in a deeper sense' [...i. iconology].

33 Vgl. KANY, Mnemosyne, S.180.

34 Vgl. ebd., S.147, 160 und S.174-178.

Individuums mit der Umwelt im engeren oder weiteren Sinn. Erst dadurch, dass der Mensch eine Umwelt durch Zeichensetzung konstituiert - vermag er sein Ich von diesem "nicht Ich" zu distanzieren. [...] "Denkraum" nennt Warburg diese gewonnene Distanz zur Umwelt, Denkraumschöpfung den konstituierenden Akt jeder ontogenetischen und phylogenetischen Entwicklung. Zeichensetzung ist es, die diese Denkraumschöpfung einleitet, Missbrauch oder Verkennung der Zeichenfunktion die Gefahr, die der Kultur immer wieder drohte und droht. Denn das ursprüngliche Zeichen, das Bild wie der Name, birgt in sich selbst die Gefahr der Hypostasis. Der Bildzauber wie der Namensfetischismus ist ein solcher denkraumzerstörender Kurzschluss des Denkens, in dem die orientierende Funktion des Abbilds verlorengeht: Zeichen und Bezeichnetes verschwimmen im magischen Weltbild zur furchterregenden Einheit.77

Für die Orientierung und Denkraumschöpfung hat die Tafel »B« des Bilderatlas eine erkenntnistheoretische und gleichzeitig methodisch begrenzte Funktion; die Figuren dieses Schaubilds vergebenwärtigen einerseits eine »anthropomorphistische« Verbindung zwischen Mensch und Kosmos, und sie schaffen andererseits die Distanz zum Objekt, die für seine rationale und wissenschaftliche Bearbeitung notwendig ist. Die denkraumschöpfenden Symbole der ersten drei Tafeln werden in der Art begrifflicher Kategorien gesetzt, die dem Subjekt ein zunächst allgemeines Verständnis historischer Zusammenhänge gewährleisten.

39 Vgl. F. SAXL, Continuity and Variation in the Meaning of Images, in: Lectures, Bd.1, S.1-12, S.1: I am not a philosopher, nor am I able to talk about the philosophy of history. It is the concrete historical material that has always attracted me [...].
Leonardos einen zentralen Platz in jener Tafel, die »verschiedene Grade der Abtragung des kosmischen Systems auf den Menschen« veranschaulicht, doch gleichzeitig akzeptierte er die Feststellung des weniger philosophisch veranlagten Fritz Saxl, daß die Zeichnung Leonards kein »Mikrokosmosmännchen«, sondern eine Proportionsstudie sei; unter das Manuskript von Saxls Vortrag über den Makrokosmos und Mikrokosmos in mittelalterlichen Bildern schrieb Warburg die Bemerkung: »Ganz famos«.40

4. Architectural Principles

In seinen Architectural Principles in the Age of Humanism von 1949 vollzog Wittkower eine gegenüber Warburg und Saxl entscheidende Wendung, denn er betonte nun den symbolischen Wert des homo vitruvianus, ohne seine historisch zurückliegende, konkrete Bedeutung bei den einzelnen Autoren analysiert zu haben:

Mit der Wiederbelebung der griechischen mathematischen Interpretation von Gott und der Welt in der Renaissance und bestärkt durch den christlichen Glauben, daß der Mensch als das Ebenbild Gottes die Harmonien des Universums verkörpert, wurde die in Kreis und Quadrat eingeschriebene Vitruvische Figur zu einem Symbol der mathematischen Sympathie zwischen Mikrokosmos und Makrokosmos.41

Vitruvs Proportionsfigur war für Wittkower damit zu einem Bild geworden, dessen symbolische Kraft für Architekten der Renaissance beinahe unausweichlich gewesen sei:

Dieses einfache Bild schien eine tiefe und grundlegende Wahrheit über Mensch und Welt zu enthüllen, und seine Wichtigkeit (importance) für Renaissancearchitekten kann kaum überschätzt werden. Die Darstellung verfolgte ihre Vorstellungskraft.42

41 With the Renaissance revival of the Greek mathematical interpretation of God and the world, and invigorated by the Christian belief that Man as the image of God embodied the harmonies of the Universe, the Vitruvian figure inscribed in a square and a circle became a symbol of the mathematical sympathy between microcosm and macrocosm. R. WITTKOWER, Architectural Principles, S.13-15, S.15 (zit. Eltg.).
42 This simple picture seemed to reveal a deep and fundamental truth about man and the world, and its importance for Renaissance architects can hardly be overestimated. The image haunted their imagination. Ebd., S.13.
Gespenster oder Alpträume - die Rede ist. Damit aber verleugnet er eine gegebenenfalls existierende symbolische Auffassung in die Tiefen individueller Vorstellungskraft (imagination); die historische Identifizierung und Analyse konkreter Bilder andererseits stand damit kaum noch zur Debatte.

Das allgemeinere Verständnis der Vitruvischen Proportionsfigur als mikrokosmisches Symbol kosmischer Harmonie schließlich beruht grundsätzlich auf der von Erwin Panofsky und P. Nicco Fasola formulierten Überzeugung, daß eine metaphysische, sowohl vom Körper des Menschen als auch von den Harmonien des Universums abgeleitete Proportionslehre die Künstler und Architekten der Renaissance bei ihrem Tun maßgeblich beeinflußt habe. In den Ausführungen Panofskys und Nicco Fasolas fand er auch den entscheidenden Hinweis auf die
die nicht nur durch die Numeri der Pseudoscholien, sondern auch durch die Architektur selbst präsentiert werden kann.

Wittkowers symbolische Deutung der Proportionsfigur Vitruvs ist angesichts der im folgenden zu analysierenden Quellen nicht haltbar; allerdings wäre sie für sein wichtigstes Argument, daß sowohl die Architektur der Renaissance im allgemeinen als auch der Zentralbau im besonderen nicht rein ästhetisch und formal begründet seien51, sondern eine religiöse und metaphysische Bedeutung hätten, nicht notwendig gewesen; denn dasselbe Argument hatte er in den Jahren 1940 bis 1945 in einigen Artikeln veröffentlicht, die später fast unverändert in die *Architectural Principles* übernommen wurden.52 Lediglich die einführenden Gedanken zum Zentralbau in der Renaissance waren vorher noch nicht erschienen, und ihnen applizierte er sein symbolisches Verständnis der Proportionsfigur Vitruvs.

5. Anthropomorphe Veranschaulichungen

51 Vgl. Wittkowers Vorwort zur dritten Auflage der »Architectural Principles«, London 1962, S. V.
rerum mirabilium, einer Kompilation von Informationen zur Geschichte Roms, zur Geographie und zu anderen Gebieten.53 Dort stellt der Autor fest, daß ein Mensch, dessen Armspannweite seiner Höhe entspricht, von den Naturphilosophen oder Doktoren (physici) als kleine Welt eingeschätzt werde:

54 Mensurae ratio bifariam convenit: nam quantus manus expansis inter digitos longissimos modus est, tantum constat esse inter calces et verticem: ideoque physici hominem minorem mundum judicaverunt. SOLINIUS, Collectanea 1,93-94; vgl. hierzu PLINIUS, Naturalis historia 7,17. (77): Quod sit homini spatium a vastigio ad vericem id esse pansis manus inter longissimos digitos observatur est.
56 Mir lagen die Solinusesditionen des British Museum, des Wellcome Institute for the History of Medicine und des Warburg Institute vor.
worden sein, während deren explizite Formulierung bei Solinus eine bis heute geringe Beachtung gefunden hat?

Ich kann mich nicht erinnern, dies bei irgendeinem Berichterstatter gelesen zu haben. In der Tat, auch Plinius schreibt, daß die Länge des Menschen vom Fuß zum Scheitel gleich sei wie diejenigen zwischen den mittelfingern bei ausgebreiteten Händen; aber jener fügt nicht hinzu, was durch Solinus hinzugefügt ist, daß aus demselben Grund die Doktoren den Menschen als kleine Welt bezeichneten.

In erster Linie drückt Saumaise seine Verwunderung darüber aus, daß ein belesener Mann wie er selbst die Formulierung des Solinus für selten, außergewöhnlich und bemerkenswert hält. Er könnte allerdings, so Saumaise weiter, ungefähr erkennen, worauf Solinus und seine Gewährsmänner hinauswollten, denn die Naturphilosophen bezeichneten den Osten als die rechte und den Westen als die linke Seite der Welt, während der Scheitel dem Norden und die Füße dem Süden entsprachen. Hiermit werde die eigentliche Intention des Solinus deutlich:

Nämlich so viel Raum vom Osten zum Westen, von der rechten Seite der Welt zu ihrer linken ist, so viel wird man vom Norden zum Süden, vom Scheitel der Welt bis zu ihren Füßen zu sein erkennen, Dies trifft ebenso im Menschen und in dem Verhältnis seines Maßes zusammen, so daß er zu Recht für einen Mikrokosmos gehalten wird.

59 Hoc non memini apud ullam auctorem legisse. Plinius sane id etiam scribit, quod sit homini spatum a vestigio ad verticem, id esse passis manibus inter longissimos digitos: verum non addit ille, quod additum Solino, ea de causa physicos hominem minorem mundum judicavisse. CLAUDE DE SAUMAISE, Pliniæae Exercitationes in Caji Julii Solinii Polyhistora, Utrecht 1689 (zufrist 1629), fol.32b, C-D.
60 Quantum autem ab Oriente spati est ad Occidentem, hoc est, a dextera mundi ad sinistram, tantum esse dignoscitur a Septentrione ad meridiem, vel a vertice mundi ad calces. Hoc idem in homine, & mensuræ ejus ratio sic convenit: ideo jure μικρόκοσμος judicatus. Ebd., D-E.
scheint ein uns heute offensichtlicher Symbolismus noch bis ins 17. Jahrhundert von vergleichsweise geringer Relevanz gewesen zu sein.

[...] wenn wir unsere Schultern gegen die nördliche Gegend ausrichten, können wir - aufgrund der Natur, die uns die Beweglichkeit unseres Halses gegeben hatte - Hals mühelos auf der Schulter ein wenig nach links bewegen, um so die Sonnenaufgangsposition (Orientia dil Sole) des Sommers, dann der Tag-und Nachtgleiche und schließlich des Winters zu erhalten. Wenn wir dann den Kopf in der Mitte festsetzen, mit dem Kinn senkrecht zur Höhe der Brust, können wir die direkte Gegend des Südens haben.64

Die genannten anthropomorphistischen Interpretationen und Anschauungen zeugen von zwei grundsätzlichen Varianten des Anthropomorphismus, nämlich einerseits von naturphilosophisch und andererseits von praktisch motivierten Veranschaulichungen durch das Medium des menschlichen Körpers. Letztere gehörten vor der Durchsetzung geomorphischer Vermessungstechniken und metri-

63 Vgl. Kap. II und etwa JACQUES ANDROUET DU CERCEAU, De architectura opus, Paris 1559, fol.Aij4v-Aiv4v; CHARLES DE BOVELLES, Geometrie practique, Paris 1549 (zuerst 1542), c.54v (d.i. Kap.7).
66 GEOFROY TORY, Champflevry, Paris 1529, fol.31v.
67 CELIO RICCHIERI, Lectionvm antiquarvm libri XXX, fol.58-59 (der Autor bezieht sich hier ausdrücklich auf Solinus, nicht auf Vitruv); vgl. auch Kap. VIII.1 (P. Cattaneo).
II. VITRUVS PROPORTIONSFIGUR

1. Metrologie

Metrologie, als die Wissenschaft vom Messen, definiert die Maßeinheiten; diese sind Teil der Meßkunde (ratio mensurarum), die wiederum, wie der im ersten nachchristlichen Jahrhundert schreibende Columella betont, für den Architekten unerläßlich ist. Es überrascht daher nicht, daß Vitruv den Kanon menschlicher Proportionen in antiken Standardmaßen definiert, deren metrologisches System sich aus den Angaben im Text rekonstruieren läßt. In seiner Darstellung der ästhetischen und theoretischen Grundbegriffe der Baukunst erklärt Vitruv, daß die Eurythmie der Gebäude ebenso symmetrisch zu sein habe wie das Verhältnis der Glieder am menschlichen Körper (1.2.4.). Die Dimensionen dieser Glieder sind in denselben Standardmaßen, *cubitus*, *pes*, *palms* und *digitus* (Elle, Fuß, Querhand und Fingerbreite), ausgedrückt, die später, im einleitenden Abschnitt über die Symmetrien der Tempel, spezifiziert werden: der *cubitus* sei 1/4 und der *pes* 1/6 der Körperhöhe des Menschen (3.1.2.). Nach einer erneuten Betonung der Wichtigkeit anthropomorpher Maße für das Bauwerk (3.1.5.) und einem Exkurs über das Duodezimalsystem definiert Vitruv schließlich die Relationen der Maßverhältnisse untereinander. Und zwar enthalte der *cubitus* 6 *palmi* oder 24 *digiti*, der *pes* 4 *palmi* oder 16 *digiti* und der *palms* 4 *digiti* (3.1.7-9.). Die einzelnen Dimensionen und ihre Relationen entsprechen dem System anthropomorpher Metrologie, das in seinen Grundzügen bis auf babylonische oder frühere Zeiten zurückgeht und bis zur Einführung des Meters galt. Danach wurden auf die Elle 4 Handbreiten, anderthalb Fuß, oder 24 Fingerbreiten gerechnet. Wie Vitruv selbst darlegt, stimmt die anthropomorphe Metrologie in Teilen mit den auf dem Duodezimalsystem beruhenden Münz- und Gewichtsrechnungen überein (3.1.5-8.). Hieraus ergibt sich auch die nahe Verwandtschaft der von Vitruv beschriebenen metrologischen Verhältnisse mit der griechischen Metrologie. Das gilt etwa für die Sechsteilung der Drachme (3.1.7.) oder für die Herleitung des *palms* aus der griechischen Bezeichnung für die Querhand, δόξω (2.3.3.). Diese Verbindungen zu griechischen Maßverhältnissen resultieren sowohl aus dem Werdegang Vitruvs, dessen praktische und theoretische Ausbildung in hellenistischer Architektur wurzelte, als auch aus seinen zahlreichen Hinweisen auf die von ihm verwendeten griechischen Quellen. Obwohl die von Vitruv gleichzeitig beschriebene römische Metrologie (3.1.6.; 3.1.8.) nicht grundverschieden von der griechischen ist, gibt es zwischen beiden einige Unterschiede, die in Vitruvs Angaben zu den anthropomorphen Maßen zur Geltung kommen.

Vitruv bezieht alle in seinem Proportionskanon angegebenen Maße auf die Höhe des menschlichen Körpers, die identisch mit der Länge der über der Brust gemessenen ausgestreckten Arme ist. Diese Dimension wurde spätestens seit ägyptischer Zeit, besonders aber im antiken Griechenland, als ein Standardmaß aufgefaßt, das unter der Bezeichnung ὑπέραξι (Klaffer) der Länge von 6 Fuß entspricht und in der römischen Metrologie als *passus* mit einer Länge von 5 römischen statt 6 griechischen Fuß auffaucht. Neben weniger gebräuchlichen

4 COLUMELLA, De re rustica 5.1.4.
Maßeinheiten wie der κόλομος ist die ὀργυώ die größte vom menschlichen Körper unmittelbar abgeleitete Dimension. Den griechischen Klafter von 6 Fuß zugrundelegend repräsentieren Vitruvs Proportionen eine vereinfachte Wiedergabe des griechischen metrologischen Systems, wie es sich aus griechischen und byzantinischen Quellen rekonstruieren läßt (Appendix 2).\(^7\) In diesem System enthält der Klafter (ὀργυώ) 96 Daktylen (δακτύλου) oder 24 Palästen (πολαστών) oder 6 Podes (πόδες) oder 4 Pecheis (πηχης); d.h. in Vitruvs lateinischer Terminologie 96 digiti oder 24 palmi oder 6 pedes oder 4 cubiti. Demgemäß hat der cubitus 24, der pes 16 und der palmus 4 digiti. Mit diesen Standardmaßen, mit mensurae (com-mensus), werden, wie weiter unten zu zeigen sein wird, die Symmetrien der Tempel berechnet. Dann dürfte auch klar werden, warum die symmetria als das mit Maß (sym-metros, com-mensus) operierende Prinzip für den Ruhm des Architekten (6.8.9.) verantwortlich ist.

Vitruvs Kanon bezieht sich nicht nur mit seinen Standardmaßen, sondern auch durch die Beschreibung des so genannten homo ad circulum auf die antike Metrologie. Dieser habe bei ausgestreckten Extremitäten sein Zentrum im Nabel, aus welchem sich mithilfe des Zirkelschlages eine die Spitze der Hände und Füße umschreibende Rundung ergeben. (3.1.3.). Einen wirklichen Kreis um diese Figur zu schlagen, ist allerdings äußerst mühsam - vor allem, wenn man,

2. Metrologie, Malerei und Skulptur

Im Vergleich zum vollständigen System der griechischen Metrologie hat Vitruv nur die ihm relevant erscheinenden Standardmaße benutzt. Die angegebenen Proportionen dienen der Etablierung von Maßverhältnissen, die sowohl für Architektur als auch für Bildhauerei und Malerei Gültigkeit beanspruchen konnten. Daher erwähnt Vitruv ausdrücklich die Proportionen von Gesicht und Kopf, ein Zehntel und ein Achtel der Körperhöhe, die für architektonische Zwecke bedeutungslos, für Skulptur und Malerei jedoch wichtig waren. Das Gesicht, das nach Gellius im Lateinischen (facies) auch die Bedeutung von Form (forma, species) haben kann, sowie der Kopf gelten seither als die

8 AGRIPPA VON NETTESHEIM, De occulta philosophia, Köln 1533, fol.166.
9 VINCENZO SCAMOZZI, L’Idea della architetttura universale, 2Bde., Venedig 1615, Bd.1, fol.39.
12 Vgl. Anm. 60.
13 GELLIUS, Noctes atticae 13.30.
Vor dem vornehmsten Körperteil, und beide spielen in den bekannten Proportionen als Modul eine entscheidende Rolle. Außerdem kann man annehmen, daß bei den archaischen Kouroi, die aufgrund ihrer geraden Längenchse für dieses Genre außergewöhnlich genaue Messungen erlauben, Kopf- und eventuell auch Gesichtslängen als Modul dienten.

Eine ähnliche Herleitung aus der Metrologie gilt auch für die Länge des Gesichts, die ein Zehntel des mit der Körperhöhe längengleichen Klafters (οργυαχ) beträgt. Der Wert von einem Zehntel als solcher ist eigentlich nicht mit dem zweiten und in der Metrologie selbst am häufigsten verwendeten System vereinbar, die Dimension als Vielfaches einer kleineren Einheit auszudrücken. Wenn man etwa wie Vitruv die οργυαχ als die größte und den digités als die kleinste Bezugseinheit zugrunde legt, dann ist der zehnte Teil des Klafters ein rationaler nicht zu bestimmender Wert zwischen 9 und 10 digités. Vitruv rettet jedoch auch für diesen Wert, ein Zehntel, die Verbindung zur Metrologie und behält gleichzeitig die Einteilung der Körperhöhe in Brüche mit dem Zähler eins bei. Zu diesem Zweck bezieht er sich auf ein anderes, weniger bekanntes Standardmaß der griechischen Metrologie, nämlich auf das όρδόδωρον, die aufrechte Hand, die mit seiner Definition der ausgestreckten Hand wörtlich übereinstimmt. Diese messe man nämlich vom Handgelenk zur Spitze des Mittelfingers der ausgestreckten Handfläche - manus pansa ab articulo ad

14 Vgl. PANOFSKY, Die Entwicklung der Proportionslehre (zit. in Kap. I.4).
16 Vgl. HULTSCH, Metrologie, S.29-30.
extremum medium digitum.17 Die aufrechte Hand wiederum identifiziert Vitruv
mit der Länge des Gesichts, die sich aus der Entfernung von der Kinnspitze bis
zum Haaransatz ergibt. Damit wird das \textit{ροδοθωρον} nicht gemäß seiner
metrologisch festgelegten Dimension (11 digiti), sondern bezüglich seiner
metrologischen Definition (vom Handgelenk bis zur Spitze des Mittelfingers)
dem Kanon der menschlichen Proportionen eingegliedert. D.h. Vitruv faßt die
identischen Dimensionen von Hand und Gesicht als ein Zehntel der Körperhöhe
oder der ρωγιά auf und nimmt dabei eine geringfügige Verfälschung ihrer
ursprünglich metrologisch bestimmten Länge in Kauf. Hierbei muß Vitruv
einen Grund gehabt haben, gerade das \textit{ροδοθωρον} für seinen Kanon zu
übernehmen, denn es gab im griechischen Maßsystem noch die kleine Spanne
(lichas), die mit 5/48 der Körperhöhe (d.i. 1/9,6 oder 11 digiti) der Dimension
von 1/10 näher gekommen wäre als das \textit{ροδοθωρον} (vgl. Appendix 2). Das
Motiv für Vitruvs Wahl scheint sich, wie schon im Falle der großen Spanne, aus
den spezifischen Anforderungen eines Proportionskanons ergeben zu haben,
dessen Brauchbarkeit sich auch auf die bildenden Künste erstrecken sollte.
Denn die in Malerei und Skulptur nützlichen Proportionen beruhten weniger auf
der messenden Bewegung der gespreizten als vielmehr auf der vergleichsweise
starren Dimension der aufrechten Hand. In Vitruvs manipuliertem Propor-
tionskanon existierten also einerseits metrologisch stimmige Einheiten wie
cubitus, pes, palmarus und digitus, die sowohl für den Architekten als auch für
den Bildhauer und Maler Gültigkeit haben, während andererseits die
abgeänderten Dimensionen wie das zur Gesichtslänge konvertierte \textit{ροδοθωρον}
und die mit dem Kopf identifizierte \textit{σωσθομι} lediglich in der Skulptur oder
Malerei sinnvoll sind. Außerdem kollidieren sie dort als metrologisch
irrelevante Einheiten nicht mit den Standardmaßen des anthropomorphen
Maßsystems. Somit hat Vitruvs Kanon der menschlichen Proportionen
tatsächlich Eigenschaften, die sich sowohl auf Architektur als auch auf Skulptur
und Malerei beziehen können: Die anthropomorphen Standardmaße verweisen
auf den zu erwartenden Gebrauch von metrologischen Maßeinheiten am
Bauwerk, und die Proportion des Kopfes sowie die nicht ganz widerspruchsfrei
eingefügte Dimension für das Gesicht belegen die Relevanz des Kanons für
Maler und Bildhauer.

Die kleine metrologische Ungenaugkeit in Vitruvs Angabe zu den Propor-
tionen von Kopf und Gesicht mag auch für jenes Problem verantwortlich sein,
mit dem sich alle Vitruvkommentatoren des 16. bis 20. Jahrhunderts
konfrontiert sahen: daß die Entfernung von der Brusthöhe bis zum Scheitel 1/4
und von dort bis zum Haaransatz 1/6 der Körpergröße sei. Dies jedoch
widerspricht einer anderen Aussage Vitruvs, gemäß der die Länge des Gesichts
(vom Kinn bis zum Haaransatz) 1/10 und die des Kopfes (vom Kinn bis zum
Scheitel) 1/8 betrage, denn für die Dimension vom Haaransatz bis zum Scheitel
ergeben sich auf der Grundlage beider Angaben zwei verschiedene Werte,
nämlich 1/12 und 1/40. Letzterer resultiert aus der Differenz zwischen der
Kopf- und der Gesichtslänge (1/8 minus 1/10), während 1/12 das Ergebnis der
Subtraktion von 1/4 und 1/6 ist. Dieser Widerspruch erfordert offenbar eine
Konjektur. Man nimmt daher an, daß es nicht von der Höhe, sondern von der
Mitte der Brust (a medio pectore) bis zum Scheitel 1/4 sei. Der notwendige
Einschub in den korrupten Originaltext, der bereits von Leonardo da Vinci im

17 Vgl. HULTSCH, Metrologie, S.29-30; POLLUX, Onomasticon 2.157, Ed. Bekker, S.90-91.
15. und Cesare Cesariano im 16. Jahrhundert vorweggenommen wurde, findet in der hier vorgeschlagenen metrologischen Erklärung des Vitruvischen Propor-
tionskanons nur teilweise eine Bestätigung, denn die Konjektur löst den Widerspruch nicht vollständig auf. Durch eine Verlagerung des Meßpunktes für den Wert von 1/4 zur Brustmitte wird zwar dessen Relation zu 1/6 in den Bereich des realistischen gerückt, doch gleichzeitig haben beide Dimensionen, 1/4 und 1/6, dann keinen zweiten gemeinsamen Bezugspunkt mehr. D.h. es
cann rechnerisch nicht mehr überprüft werden, ob beide Angaben, sowohl jene
die Werte 1/10 und 1/8 als auch jene die Werte 1/6 und 1/4 betreffenden, in der
Längenbestimmung des Abstandes vom Haaransatz bis zum Scheitel koinzidieren oder nicht. Diese fehlende Möglichkeit könnte eine Folge von
Vitruvs Operation sein, ein im metrologischen Sinne nicht widerspruchsfreies Maß in seinen Proportionskanon eingeführt zu haben, denn das als ein Zehntel
der Körperhöhe definierte ὑπόθοσορον war nicht das nächstliegende der sich
anbietenden Standardmaße (s.o.). Außerdem lehrt ein Blick auf das griechische
metrologische System (vgl. Appendix 2), daß 1/10 als rechnerische Einheit eher
ein dezimal kalkuliertes denn in ein duodezimal berechnetes Maßsystem
paßt. Die einfachsten Werte der griechischen Metrologie wie die Elle (1/4), der
Fuß (1/6), die große Spanne (1/8), die kleine Spanne (1/12), die Handbreite
(1/24) und die Fingerbreite (1/96) sind relativ einfach auf einen gemeinsamen
Nenner zu bringen und damit rechnerisch operabel, während dies mit der
Dimension von einem Zehntel wesentlich komplizierter wäre. Das mit 1/10
definierte ὑπόθοσορον war also von vornherein ein problematisches Maß, und
seine Problematik erstreckt sich sowohl auf Vitruvs Proportionskanon selbst als
auch auf dessen Rezeption seit der Renaissance.

3. Brüche

Die von Vitruv angegebenen Proportionen sind zu ungenau und vor allem zu
unvollständig, um für antike Maler und Bildhauer ernsthaft brauchbar gewesen
sein zu können. Ihre Benutzung wäre lediglich als eine grobe Richtlinie für das
Anfangsstadium einer aufrecht stehenden Figur möglich oder, in der
Bildhauerei, für die Anfertigung des im Steinbruch üblicherweise grob vorgearbeiteten Blocks nützlich gewesen18, nicht aber als verbindliches Maß für
differenziertere Arbeiten. Der Ruhm, den Vitruv im Zusammenhang mit den
angegebenen Proportionen erwähnt, dürfte also nicht nur auf die beschriebenen
Maße selbst zurückzuführen sein. Wahrscheinlicher ist, daß Vitruvs Angaben
gleichzeitig Prinzipien oder Reminiszenzen eines Systems repräsentieren, nach
denen antike Künstler einer von Vitruv rezipierten Epoche gearbeitet haben.
Ebenso sollte auch hinsichtlich der architektonischen Relevanz dieser Propor-
tionen zwischen den Maßen selbst und dem ihnen zugrundeliegenden Prinzip
unterschieden werden. Zunächst wurden natürlich Standardmaße in der Archi-
teikur verwendet, etwa für die absolute Größe des Bauplatzes, die maximale
oder minimale Ausdehnung des Gebäudes, die Abmessungen vorgefertigter
Baumaterialien oder die Dimensionen unveränderlicher Bautypen. Vitruv selbst
verwendet Maße wie Elle, Fuß und Fingerbreite für bestimmte Materialien

(10.10.2.; 3.3.3.), für Standarddimensionen von Fußböden und Fundamentierungen (7.4.5.), für absolute Größen von Maschinen und Gebäuden - soweit sie wenig veränderlichen oder bereits existierenden Standards unterworfen sind (10.13.4.; 5.12.3.; 6.6.2.) - und schließlich bei der Angabe absoluter Maximal- und Minimalgrößen für die Anwendung variabler Proportionsregeln (3.3.2.; 3.5.8.; 4.6.1.; 6.3.3.5.).19 Andererseits weisen Vitruvs Angaben für die Proportionen der Tempel, also für den wichtigsten Gebäudetyp, kaum Standardmaße auf. Die Dimensionen sind hier in einer Kombination von Vielfachen und Brüchen bereits eingeführt oder aber als konventionell geltender Längenverhältnisse angegeben. Beim dorischen Tempel etwa ist das Grundmaß oder Modul ein Bruchteil der Gesamtempelfläche, und andere Gebäudeglieder sind als Vielfache dieses Grundmaßes definiert (4.3.3-7.). Eine entschiedenere Betonung von Brüchen findet sich schließlich in der Beschreibung des ionischen Stils (3.5.1-13.). Die Breite des Frieses z.B. wird mit einem Viertel der Architravhöhe angegeben, und in ähnlicher Weise lassen sich die Verhältnisse aller Dimensionen in Brüchen, Vielfachen oder einer Kombination von beiden ausdrücken. Da diese Dimensionen meist in der Reihenfolge ihres Entstehens am Bau entwickelt werden, spricht man hier von der sukzessiven Methode.20

Der Gebrauch von Brüchen und Vielfachen findet sich nicht nur in den sukzessiv ausgearbeiteten Symmetrien der Tempel, sondern auch bei den in metrologischen Standardmaßen angegebenen Maßverhältnissen profaner Gebäude. Denn die Kalkulierbarkeit der Dimensionen ist einfacher, wenn sie als Vielfache und Bruchteile eines Standardmaßes gegeben werden, während die Umrechnung in das nächst größere oder nächst kleinere Maß zu umständlich wäre. Belege hierfür gibt der ein Jahrhundert nach Vitruv schreibende Heron in seiner Stereometrica. Wenn man etwa die benötigte Zahl der Dachziegel für ein 20 auf 13 1/2 Fuß messendes Haus bei einer ebenfalls in Fuß angegebenen Dimension der einzelnen Ziegel ermitteln will, wird man bei der Kalkulation im Fußmaß verbleiben und nicht etwa größere Längen in Ellen oder kleinere in Fingerbreiten angeben. Und alle Dimensionen, die nicht glatt im Fußmaß aufgehen, sind ohnehin in einer Kombination aus Vielfachen und Brüchen ausgedrückt. In gleicher Weise wird weiter mit Ellen sowie ihren Bruchteilen und Vielfachen gerechnet, wenn einmal mit diesem Maß begonnen wurde, etwa um die Fußbodenfläche für den Gebrauch der Fußbodenplatten zu bestimmen.21

Die Relevanz von Brüchen und mit ihnen kombinierten Vielfachen, wie sie sich aus den Proportionsbestimmungen ionischer Tempel und aus der Praxis einfacher mathematischer Operationen beim Bau ergibt, koinzidiert gleichzeitig mit den grundsätzlichen Eigenschaften antiker Metrologie. Alle Metrologie bis zur Einführung des Meters durch die französische Nationalversammlung im Jahre 1795 basierte auf den vom Menschen genommenen Maßen, war also anthropomorph. Grundsätzlich konnte man in diesem System kleinere Teile einer bereits gegebenen Länge nicht, wie in der modernen Dezimalzählung,

21 HERON ALEXANDRINUS, Stereometrica 2.41-43.

4. Der Maßstab

Es ist nun auch ein Verfahren nötig, wenn man nach einem kleinen Modell ein vollkommenes Geschütz machen will, in welchem Verhältnis man alle entsprechenden Teile genau übertragen soll. Ebenso auch, wenn man befriedigt von dieser Konstruktion von einem größeren auf ein kleineres Geschütz sie übertragen will. Wenn man jeden Teil für sich vervielfachen und so mit dem Zirkel dem Kaliber entsprechend übertragen wollte, wird das überraschend schwierig und langsam

Und auf gleiche Weise, wenn man ein zweieliges Geschütz bauen will, wird das Lineal zwei Ellen lang gemacht, auf gleiche Weise wie eine Elle eingeteilt und danach konstruiert. Und wenn uns jemand auffränge, ein halbspithamiges oder irgendein anderes, das eine beliebige, ja sogar irrationalte Geschosslänge hat, nach dem Modell zu bauen, so werden wir unfehlbar jedes einzelne Maß übertragen können. Nach derselben Methode wird man auch von größeren auf kleinere übertragen können. Die gleiche Methode wird man auch bei anderen Dingen anwenden können, wie ich in dem Einleitungsbuche gesagt habe, welches das erste meiner Mechanischen Konstruktionslehre ist.22

Grundsätzlich sind die griechisch Kanones (κοινόνον) und lateinisch regulae genannten Richtscheite oder Lineale, zu denen auch Philons Kanonion (κοινόνον) genannter Maßstab gehört, nach drei Kategorien zu unterteilen. Sie

23 PHILON BYZANTINUS, Belopoeika 50.4-51.7; zu Philon vgl. MARSDEN, Greek and Roman Artillery, S.11-12.

27 GALEN, De optima doctrina 3, Ed.Kühn, Bd.1, S.47.

29 Vgl. BLUERMNER, Technologie, Bd.3, S.91, Fig.2; ORLANDOS, Les Matériaux, Bd.2, S.63, Fig.584; CH. SINGER, A History of Technology, 5Bde., Oxford 1954-1958, Bd.1, S.780.

Ein weiterer Hinweis dieser Art ergibt sich aus Vitruvs Beschreibung des \textit{homo ad quadratum}, in der vom gleichen Maß (mensura) die Rede ist, das sowohl vom Scheitel bis zur Sohle als auch zwischen den ausgebreiteten Armen gemessen werde. Hieraus ergebe sich die gleiche Breite und Höhe, wie bei Flächen, die nach dem Winkelmaß (norma) quadratisch seien (quae ad normam sunt quadratae, 3.1.3.). Der mit diesen Worten beschriebene \textit{homo ad quadratum} verweist also auf das Winkelmaß (norma), das neben Zirkel und Richtscheit zu den grundlegenden Werkzeugen von Bauhandwerkern und Architekten gehört. Der praktische Zusammenhang dieser Instrumente untereinander wird, wie Vitruv an anderer Stelle schreibt, durch die Geometrie konstituiert:

[... und zwar vermittelt sie [d.i. die Geometrie] zuerst aus den gradlinigen Figuren (ex euthygrammis) den Gebrauch des Zirkels, wodurch sie ganz besonders das Aufzeichnen von Gebäuden auf dem Zeichenbrett und das Ausrichten rechter Winkel, waagerechter Flächen und gerader Linien erleichtert.32]

Mithilfe dieser Äußerung kann der praktische Sinn des \textit{homo ad quadratum} rekonstruiert werden. Die erwähnte gradlinige Figur (euthygramnum) entspricht jenen Flächen, die nach dem Winkelmaß quadratisch und damit rechtwinklig sind. Diese Figuren werden geometrisch mit Zirkel und Lineal konstruiert und ermöglichen als Teil angewandter Geometrie den Entwurf der Gebäude (descriptio aedificiorum, 1.1.4.) auf dem Zeichenbrett. Wenn man sich weiter vergegenwärtigt, daß bei der Beschreibung des sogenannten \textit{homo ad circulatum} möglicherweise auf eine in byzantinischen Quellen erwähnte Meßleine verwiesen wird und außerdem gar nicht von einem Kreis als solchem (circulus) die Rede ist, sondern vom Schlagen des Zirkels und dem daraus resultierenden »runden Schema« (schema rotundationis), dann dürfte die praktische Relevanz der beschriebenen Zusammenhänge klarer werden. Im \textit{homo ad quadratum} wird neben dem Winkelmaß (norma) die gradlinige Figur, das \textit{euthygramnum}, veranschaulicht, aus dem sich der Gebrauch des Zirkels (usus circini, 1.1.4.) ergibt. Auf diesen Gebrauch des Zirkels wiederum bezieht

sich die Beschreibung des *homo ad circulum*, denn mit dem im Nabel des Menschen eingesetzten Zirkel wird die Länge der Meßleine abgenommen. Dabei kann man eine Meßleine dieser Art auch als Schnurzirkel interpretieren, wie er nachweislich in römischer Architektur verwendet wurde.\(^{33}\) Wenn man sich außerdem daran erinnert, daß Vitruvs Proportionskanon selbst die metrologische Unterteilung eines Maßstabs aufweist und somit auch als kalibrierter Richtscheit (Lineal, regula, kanon) aufgefaßt werden kann, dann veranschaulichen *homo ad quadratum* und *homo ad circulum* die geometrischen Instrumente der Architekten: Zirkel und Lineal. Hinzu käme als Werkzeug zur Überprüfung rechter Winkel das erwähnte Winkelmaß (norma). Wenn die Proportionsfiguren die Nützlichkeit der Geometrie und ihrer Instrumente (regula, circinus, norma) in der soeben vorgeschlagenen Weise demonstrieren, dann ist diese Demonstration ein Teil des zu Beginn des dritten Buches formulierten Anliegens, die Symmetrien der Tempel auseinanderzusetzen (3.proem.4.; 3.1.1.). Deren einfache Maßeinteilungen (rationes mensuraturum, 1.1.4.) werden durch die Arithmetik berechnet, denn sie sind als *mensurae* (s.u.) quantitativ bestimmbar und arithmetisch rational operabel. Die schwierigeren Probleme der Symmetrie hingegen werden mit Hilfe der Geometrie (geometricis rationibus et methodis, 1.1.4.) gelöst. D. h. einerseits enthält der von Vitruv definierte Proportionskanon die im System der Symmetrien kalkulierbaren Standardmaß und die diesen Berechnungen zugrundeliegenden metrologischen Konventionen, andererseits jedoch impliziert die Beschreibung der Proportionsfiguren selbst den Gebrauch jener geometrischen Instrumente, die zur Lösung schwieriger Probleme der Symmetrie herangezogen werden. Eine solche Lösung ist etwa die geometrische Proportionierung des Atriums mithilfe der Quadratdiagonale (6.3.3.).

5. Anwendungsmöglichkeiten

Vitruvs Proportionskanon weist also verschiedenste Eigenschaften baurelevanter antiker Metrologie und Technologie auf: Die der Körperhöhe entsprechende Armspannweite war ein gebräuchliches griechisches Standardmaß, die ὄργυο; die Einteilung des Kanons ist metrologisch definiert und gehorcht der Kalibrierung konventioneller Meßinstrumente, deren Benutzung noch bis in die Neuzeit nachweisbar ist; die Betonung von Brüchen entspricht deren Gebrauch in der Kalkulation anthropomorpher sowie anderer Längenverhältnisse; der *homo ad circulum* verweist möglicherweise auf einen Schnurzirkel oder auf eine Meßlatte, die κύλως, und der *homo ad quadratum* schließlich veranschaulicht die Relevanz aus der Geometrie entwickelter und für die Ermittlung schwieriger Symmetrien notwendiger Instrumente.

Der tatsächliche Gebrauch verschiedenster Meßblätten und -seile in griechischer und römischer Architektur ist weniger quellenmäßig belegt, als vielmehr durch archäologische Funde gesichert. Eine erste Anwendung von Meßinstrumenten ergibt sich beim Aufschnüren des Bauplatzes und bei der naturmaßstäblichen Wiederholung oder Entwicklung des Entwurfs auf der obersten Fundamentschicht des Bauwerks, nämlich auf der Eutyntherie oder auf

den Stylobatplatten. Die hierbei verwendeten Leinen und Ruten waren entweder unkalibrierte Meß- und Richtinstrumente oder aber Leinen und Latten, die durch Knoten oder durch eingeritzte Markierungen unterteilt wurden.34 Ohne die aufgetragenen Dimensionen, entweder in Standardmaßen oder in deren metrologischen Konventionen definiert, sind Entwurf und Ausführung von auf Präzision beruhender Architektur nicht denkbar. Die richtige und exakte Ausführung der Messungen selbst stand daher in hohem Ansehen.35 Diese Exaktheit, die auch Vitruv meint, wenn er die Architekten auf deren peinlich genaue Einhaltung bei den Symmetrien der Tempel verpflichtet (3.1.1.), ist ein entscheidender Bestandteil der antiken Steinbauerarchitektur. Neben der unbedingte Exaktheit voraussetzenden Aufschnürung des Gebäudes selbst kam es auch bei den jeweiligen Teilen auf höchste Genauigkeit an. Da bei der Steinbautechnik die einzelnen Quader mit Dübeln und Klamern zusammengehalten wurden, konnten Ungenauigkeiten nicht durch die heute üblichen Variationen im Mörtelauftrag ausgeglichen werden.36 Vitruvs Betonung der genau einzuhaltenen Symmetrien bei den Tempeln ist also nicht nur eine Würdigung der Götter, sondern auch ein Hinweis auf die besonders in der Sakralarchitektur benutzte Steinbautechnik.

Den Gebrauch von Meßinstrumenten impliziert Vitruv selbst, wenn er die Ausbildung des Baumeisters und die ästhetischen Grundbegriffe der Architektur erläutert. Es geht unter anderem um die beiden Standardinstrumente eines Architekten, nämlich um Zirkel und Lineal (Richtscheit), deren Gebrauch sich aus gradlinig begrenzten Flächen ergibt und Teil der Geometrie ist. Die genannten Instrumente finden beim Entwurf von Grund- und Aufriß eine erste Verwendung:

Ichnographia ist der unter Verwendung von Lineal und Zirkel in verkleinertem Maßstab ausgeführte Grundriß, aus dem später die Umrisse der Gebäudeteile auf dem Baugelände genommen werden. Orthographia aber ist das aufrechte Bild der Vorderansicht und eine den Maßstäben des zukünftigen Bauwerks entsprechende gezeichnete Darstellung in verkleinertem Maßstab.37

Ichnographia und Orthographia, Grundriß und Aufriß, sind also mit Zirkel und Lineal (Richtscheit) entworfene maßstäblich verkleinerte Entwurfszeichnungen, die entsprechend den Maßstäben auf den Bau selbst übertragen werden. Die Umsetzung der maßstäblich verkleinert entwickelten Abmessungen geschieht mit Instrumenten, die denen des Entwurfsstadiums ähneln oder gleichen, nämlich mit Zirkel und Lineal (Richtscheit). Dabei ist das Richtscheit oder das Lineal nicht nur Garant ebener Flächen und gerader Linien, sondern auch - im Sinne des von Pollux und Galen erwähnten Ellenmaßes sowie des bei Philon beschriebenen Maßstabes - Träger des Maßes selbst. Mit dessen Hilfe wird die nach Maß berechnete Abmessung des Bauwerks (modica membrorum operis commoditas), ordinatio, realisiert (1.2.2.). Die entscheidende Betonung liegt hier auf der modica commoditas, der maßstäblichen Abmessung, deren praktischer Ablauf ohne die Hilfe von Meßinstrumenten nicht denkbar ist.

35 Vgl. ebd., S.33.
37 Ichnographia est circini regulaeque modice continens usus, e qua capiuntur formarum in solis arearum descriptions. Orthographia autem est erecta frontis imago modiceque picta rationibus operis futuri figura. VITRUV, De architectura 1.2.2.

Eine gewisse Bedeutung dürften Maßstäbe auch für Maler und Bildhauer gehabt haben. Im Falle der Skulptur könnte man an bestimmte Meßtechniken denken, die bei der maßstäblichen Übertragung von einem Modell auf das Original benutzt wurden, und auch in der Malerei käme die Benutzung solcher

Instrumente infrage. Daneben ist zu bemerken, daß der Doryphoros Polykleits Verbindungen zur Metrologie zu haben scheint.42

6. Modus und mensura

Das Prinzip, mit Brüchen und Vielfachen sowie in metrologisch bestimmten Konventionen zu arbeiten, geht, wie der von Philon erörterte Gebrauch eines Maßstabs zeigt, über die einfache Benutzung von Standardmaßen hinaus. Dieses weitergreifende Prinzip ist möglicherweise mit Vitruvs eher metaphorisch anmutender Anschauung gemeint, daß das Gebäude und seine Teile sich zueinander in einem bestimmten Verhältnis zu verhalten hätten (1.2.4.; 3.1.1.). Die Relationen der Teile untereinander und zum Ganzen des Baues lassen sich dabei aus einem \textit{modulus} (3.1.1.; 1.2.2.; 1.2.4.) berechnen, der wiederum aus dem Gebäude selbst, etwa der Säulendicke (1.2.4.) oder der Breite des Tempels (3.3.7.), entwickelt wird. Besonders beim letzten Verfahren besteht ein augenfälliger Zusammenhang zwischen den Teilen und dem Ganzen dadurch, daß das Grundmaß, \textit{modulus}, ein Glied des Ganzen ist und als solches ebenfalls in den anderen Teilen aufgeht. Allerdings basiert Vitruvs gesamte Baulehre nicht auf dem Modulverfahren allein; so entwickeln sich im ionischen Stil (3.5.1-13.) die einzelnen Proportionen aus bereits gegebenen oder standardisierten Dimensionen. Doch sowohl das Modulverfahren als auch die sogenannte sukzessive Methode im ionischen Tempelbau (s.o.) sind mit der Leibmetaphorik untereinander zusammenhängender Glieder eines Körpers zutreffend charakterisiert.

Das oben erörterte Prinzip, mit Brüchen und Vielfachen sowie innerhalb metrologischer Konventionen zu operieren, verdeutlicht den meß- und kalkulationstechnischen Hintergrund dieser Metaphorik, doch es gibt kaum Hinweise darauf, wie sich dieses Prinzip aus den Beschreibungen Vitruvs selbst ableiten läßt. Dies ist vielleicht durch eine Analyse derjenigen Aussagen möglich, die Vitruv über das Berechnungsprinzip und das Aufmaß von Gebäuden macht. In der Erläuterung der nach Maß berechneten Abmessung des Bauwerks, \textit{ordinatio}, sowie bei der Beschreibung des maßstäblich angefertigten Entwurfs gebraucht Vitruv wiederholt das Wort \textit{modus} und dessen Derivate (1.2.2.); Maß ist hier also nicht \textit{mensura}, sondern \textit{modus}. Obwohl Vitruv keine ausdrückliche Unterscheidung zwischen den Begriffen \textit{modus} und \textit{mensura} macht, gibt ihr differenziertem Gebrauch im Text einige Hinweise auf ihre unterschiedliche Bedeutung. \textit{Mensura} wird vor allem verwendet, wenn es sich um bereits etablierte Maße handelt, etwa die Körperhöhe eines wohlgebildeten Menschen (3.1.3.), die bereits feststehenden Längen- und Breitendimensionen eines Speisesaals (6.3.8.), den Erdumfang (1.6.11.) oder die Zuteilung eines bestimmten Quants von Vorräten (5.10.9.). Das Substantiv \textit{modus} und seine adjektivischen Derivate hingegen kommen eher bei Maßen zur Anwendung, die sich aus Verhältnissen entwickeln oder zu entwickeln sind. So wird \textit{modus} gebraucht, wenn das Maß des Hafens sich aus der Größe der Schiffe ergibt (5.12.7.) oder das der ländlichen Gebäude aus dem Umfang des Ackers (6.6.1.). Das Adjektiv \textit{modicus} taucht auf, wenn es sich um das Verhältnis der einzelnen

Gebäudeglieder (1.2.2.), um besonders zu bestimmende Dimensionen von Quadersteinen (4.5.4.) oder eben um maßstabstreuere Entwurfszeichnungen handelt (1.1.2.). Dieser unterschiedliche Gebrauch von modus und mensura ist bei Vitruv nicht durchgehend zu beobachten, doch zeigen die genannten Beispiele eine gegenüber heute wesentlich differenziertere Auffassung von Maß. Diese Differenzierung, die mit einer Unterscheidung zwischen dem bestimmten Maß im Sinne von Dimension einerseits (mensura) und einem zu entwickelnden oder entwickelten absoluten Verhältnismaß andererseits (modus) sicher noch nicht vollkommen definiert ist, findet sich - wenn nicht durchgehend, so doch beständig - auch bei anderen lateinischen Schriftstellern. Mensura wird besonders in der Literatur zur Feldvermessung verwendet und auch immer dann, wenn es um die Festsetzung einer anschaulichen Größe geht.43 Modus hingegen taucht in solchen Zusammenhängen kaum auf, sondern eher bei der Bestimmung von Verhältnismaßen.44 Dies wird besonders deutlich, wenn modus und mensura zusammen gebraucht werden und einerseits das abstrakte und andererseits das konkrete Maß bedeuten.45 Quellen des frühen 17. Jahrhunderts berichten noch von einer mensura continuorum und einer mensura discretorum, womit im ersten Fall modus oder modius, im zweiten aber mensura bezeichnet wird.46 Mensura ist, nach einer von Cesariano zitierten älteren Auffassung, dasjenige, was sich durch Gewicht, Kapazität, Länge, Höhe und Breite bestimmen läßt.47 Diesem bestimmten und konkreten Maß steht modus entgegen, dessen Bedeutung sich nicht im ursprünglich technischen, sondern im übertragenen, etwa moralischen oder grammatischen Sinne (moderat, Modus) erhalten hat und eine auf bestimmten Kalkulationen oder Werten basierende Verhältnismäßigkeit meint. Sie gleicht jenem Prinzip von Maßstäblichkeit, modice usus (1.2.2.), dem auch die nach metrologischen Konventionen definierte Proportionalität von Philons Maßstab unterliegt. Diese Proportionalität des modus findet in Vitruvs die Brücke betonenden Proportionskanon einen anschaulichen Ausdruck.

7. Symmetria und eurythmia

Vitruv erörtert die Wissenschaft von der Baukunst in einer ständigen und oft verwirrenden Auseinandersetzung mit der architekturtheoretischen Terminologie seiner griechischen Quellen. Die aus diesen Quellen geschöpfte Unterscheidung zwischen symmetria und eurythmia ähnelt dem Unterschied zwischen mensura und modus. Während symmetria auf einer konkreten, nämlich mit einem modulus oder mit Standardmaßen meßbaren, also kommensurablen Beziehung von Strecken beruht, ist eurythmia ein erst diesen Beziehungen nachfolgendes Prinzip, das eine dem modulus verwandte Verhältnismäßigkeit impliziert. Hingegen wird symmetria im Sinne von mensura auf der Grundlage des modulus berechnet oder mit Standardmaßen ausgemessen (commensus,

43 Vgl. die einschlägigen Lateinlexika, H. GEORGES, Lateinisch-Deutsches Handwörterbuch; Oxford Latin Dictionary; Thesaurus linguae latinae, s.v. mensura, metior.
44 Vgl. ebd. s.v. modus, modius, modicus, meditor.
45 Vgl. COLUMELLA, De re rustica 5.1.4.
46 Vgl. CASPAR WASER, De antiquis mensuris Hebraeorum, Heidelberg 1610, fol.3.
47 CESARIANO, Vitruvio de architectura, fol.143v.
6.2.1.); d.h. das in der Regel im Deutschen mit »berechnet« übersetzte *commensus* (1.3.2.) der symmetrischen Verhältnisse (symmetriarium ratiocinationes, 1.3.2.) entstammt dem griechisch mit *metron* (μέτρον) und lateinisch mit *mensura* bezeichneten bestimmten Maß. Die *eurythmia* hingegen repräsentiert ein der *symmetria* korrespondierendes aber nichtsdestoweniger anderes, nämlich übergeordnetes Prinzip:

Eurythmia ist das anmutige Aussehen und der in der Zusammensetzung der Glieder symmetrische Anblick. Sie wird erzielt, wenn die Glieder des Bauwerks in zusammenstimmendem Verhältnis von Höhe zur Breite und von Breite zur Länge stehen, überhaupt alle Teile der ihnen zukommenden Symmetrie entsprechen.48

Dieses *eurythmia* genannte andere Prinzip beruht zwar auf der aus den *mensurae* abgeleiteten Verhältnissen, ist aber als *commodus aspectus* nicht mit diesen identisch. Der mit Verhältnismäßigkeit (*com-modus*) erzielte anmutige Anblick *(venusta species, aspectus)* ergibt sich aus der Anordnung der Glieder und deren Relation zu Länge, Breite und Höhe des Gebäudes. Die *eurythmia* ist somit die Verhältnismäßigkeit oder Wohlpportioniertheit, die nicht nur aus den mit dem *modulus* oder der *mensura* (*com-mensus*, 6.2.1.) berechneten Maßen (symmetriarium ratiocinationes, 1.3.2.) oder gemessenen Dimensionen, sondern auch aus den Prinzipien einer mit *modus* (*com-modus*, 1.2.3.) realisierten Gesamtkomposition resultiert. Bei Xenophon und Heron wird *eurythmia* denn auch im Sinne einer verhältnismäßigen Wohlpportioniertheit oder Harmonie benutzt49, während *symmetria* für Euklid das Verhältnis kommensurabler, d.h. mit gleichem Maß messbarer Strecken ist.50

Wie weit sich das Prinzip der *symmetria* von demjenigen der *eurythmia* unterscheidet, zeigt sich in Vitruvs Diskussion jener Modifikationen, der sich die Symmetrien aufgrund optischer Täuschungen zu unterziehen haben. Dort nämlich wird die unbedenkliche Abänderung der *symmetria* empfohlen, um den täuschbaren Augen einen korrekten Anblick der *eurythmia* (aspectus eurythmiae, 6.2.5.) zu gewährleisten. Das Maßsystem, die auf der *mensura* beruhende Symmetrie, kann unbedenklich modifiziert werden, und die *eurythmia* ist dabei das übergeordnete ästhetische Prinzip, innerhalb dessen diese Modifikationen geschehen. Für die Abänderung der Symmetrien (commutatio symmetriarium, 6.1.5.) gibt Vitruv größtenteils eher unsystematische Faustregeln (3.3.12.; 3.5.10-12.; 6.3.4.), doch die modifizierten Proportionierungen für das ionische Gebäude (3.5.10-12.) gehorchen immerhin dem Prinzip, einzelne Dimensionen sukzessive in Bruchteilen vorangegangener Werte anzugeben. Dieses Prinzip aber ist in der Praxis identisch mit demjenigen, das sich sowohl aus Philons Benutzung metrologischer Konventionen als auch aus Vitruvs metrologisch definiertem und die Bedeutung von Brüchen betonenden Proportionskanons ergibt. Wenn etwa der *zophorus* über dem Architrav um 1/4 schmaler sein soll als der Architrav selbst, so muß das gewünschte Maß, nämlich 3/4 der Architravstärke, mit einem Maßstab der von Philon beschriebenen Art ermittelt und übertragen werden. Die Kalibrierung basiert hier allerdings auf einfachen Vierteln und nicht auf

48 Eurythmia est venusta species commodusque in compositionibus membrorum aspectus. Hæc efficacit, cum membra operis conveniunt sunt altitudinis ad latitudinem, latitudinis ad longitudinem, et ad summam omnia respondunt sae symmetriae. VITRUV, De arcehitectura 1.23.

49 XENOPHON, Memorabilia 3.10.12.; HERON ALEXANDRINUS, Definitiones 135.13.

50 EUKLID, Elementa 10.1.
geviertelten Sechsteln (s.o.). Mit dieser Operation wird die symmetria innerhalb dem Prinzip der eurythmia abgeändert, und dieses Prinzip ergibt sich aus dem modus, d.h. aus der Art und Weise wie die von der mensura unterschiedenen Maßstäbe benutzt werden. Hieraus kann man schließlich auch erklären, warum der zur Ermittlung der Symmetrien (com-mensura-iones) bisweilen gebrauchte modulus sich etymologisch aus modus und nicht aus mensura ableitet: wie Philon anläßlich einer anderen Methode zur Proportionierung von Katapulten schreibt, könne man bei der Kalibrierung des mit der Geschoßlänge identischen Maßstabes auch eines der durch die Unterteilung gewonnenen Teile als Modul nehmen. Mit diesem Modul und nicht mit dem sonst die maßstäbliche Übertragung garantierenden Maßstab selbst werden die korrekten Dimensionen ermittelt und vom Modell auf die Originalmaschine transferiert. D.h. weil der modulus ein kleiner Teil des sonst den modus repräsentierenden Instruments ist, wurde sein Name folgerichtig als dessen Diminutiv gebildet: modulus, »kleiner Modus«.

8. Manasara - anstatt einer Zusammenfassung

51 PHILON, Belopoeika 54.27.-55.3.
hohen Präzision, ein anderer das übergreifende System metrologischer Kalibrierungs- und Proportionierungsprinzipien. Es könnte dabei allerdings fragwürdig erscheinen, diesen Prinzipien eine über eine Epoche, etwa die griechische, hinausgehende Relevanz zuzusprechen, um so die Konsultierung zeitlich und sachlich weit auseinanderliegender Quellen wie Xenophon (5.–4. Jahrh. v. Chr.) und Heron (1. Jahrh. n. Chr.) zu rechtfertigen. Doch die zum Abschluß zu erörternden Bauvorschriften hinduistischer Architektur zeigen, daß gerade die aus der Meßkunde und dem Gebrauch technischer Instrumente abgeleiteten Anweisungen durchaus epochenübergreifende Gültigkeit haben.

52 Architecture of Manasara, translated from original Sanscrit by Prasana Kumar Acharya, 5Bde. [ersch. 3], London/New York o.D. [1933-1934], Bd.4, S.LIX.
54 Architecture of Manasara, Bd.4, S.LIX.
55 Ebd., S.9.
56 Ebd., S.600.
57 Ebd., S.7-9.

60 Ebd., S.52. Der Text in englischer Übers. lautet: »(His) head should be assigned to the plot of Arya (i.e.Aryaman); he is known to lie by the north-east direction with his face turned downwards [die engl. Übers. an dieser Stelle ist ungenau und müßte sinngemäß etwa lauten: [...] that his head is in the region of Arya facing north-east.]. His left hand is stretched out by the corner line in the north-east (oder genauer: (...) is stretched out on an angle in the east?); his left foot is stretched out by the corner line in the south-west; his right hand is stretched out by the corner line in the south-east; and his right foot is stretched out by the corner line in the northwest.« Runde Klammer kennzeichnen die Konjekturen des Übersetzers, eckige Klammern problematische Teile der Übersetzung, auf die mich David Pingree freundlicherweise aufmerksam machte.
61 Ebd., S.199.
Es wird allgemein angenommen, daß Vitruv in Spätantike und Mittelalter eine mehr oder weniger kontinuierliche Bedeutung gehabt habe und daß besonders Vitruvs Proportionsfigur sowie die in *De architectura* niedergelegten Methoden zur Gebäudeproportionierung in Kunst und Architektur des Mittelalters wirksam gewesen seien. Die konkreten und verifizierbaren Nachweise für die Annahme einer nennenswerten Bedeutung Vitruvs im Mittelalter sind jedoch alles andere als eindeutig, und sie beruhen in den seltensten Fällen auf einer gründlichen Analyse des bisher vorliegenden Materials. Diese Analyse müßte der Gegenstand einer eigenständigen Studie über Vitruv im Mittelalter sein, die an dieser Stelle nicht möglich ist. Ich habe mich daher darauf beschränkt, das bekannte Material über Vitruv im Mittelalter in Form einer Liste (Appendix 3) zusammenzustellen. Dort stehen als verifizierbar eingeschätzte Belege neben solchen, die entweder nicht überprüft werden konnten oder deren Stichhaltigkeit beim besten Willen nicht nachvollziehbar war. Daneben werde ich die von mir als kontrovers angesehenen Belege, die nicht im Appendix auftauchen, kurz analysieren. In dieser Analyse wird es darum gehen, die bislang akzeptierten Argumente zum Thema Vitruv im Mittelalter einer kritischen Überprüfung zu unterziehen; es wird zu klären versucht, unter welchen Voraussetzungen sich die Rezeption Vitruvs im Mittelalter entwickelte; welche Aussagen diese Rezeption für die architektonische Bedeutung Vitruvs im Mittelalter zuläßt; auf welchen architekturgeschichtlichen Grundlagen eine eventuelle Wirksamkeit Vitruvs gestanden haben könnte, und welche Interpretationen seiner Proportionsfigur angesichts des vorliegenden Materials plausibel erscheinen.

1. Versuch einer Rezeptionsgeschichte

Die generelle Entwicklung

Vitruv gehörte zu den Autoren des klassischen Altertums, die während der Spätantike und des Mittelalters verfügbar waren und bisweilen auch gelesen wurden; doch zählte Vitruv damit nicht zu den prominentesten Exponenten antiker Kultur. Vielmehr wurden etwa Ovid, Vergil, Horaz, Cicero oder Boethius häufiger rezipiert1, und selbst ein heute weniger bekannter Schriftsteller wie Solinus (3. Jahrhundert) läßt sich in mittelalterlichen Quellen häufiger nachweisen als Vitruv.2 Andererseits war er weiter verbreitet als die

5 Vgl. MANITIUS, Geschichte der lateinischen Literatur, Bd.1, S.243-256; Texts and Transmission, passim.
6 Vgl. BRUNHÖLZL, Geschichte der lateinischen Literatur.
Spätantike und frühes Mittelalter

Eine verifizierbare Bedeutung Vitruvs für die technische Literatur des Mittelalters findet sich möglicherweise in einigen Rezeptbüchern (mappae claviculae), denen De architectura angebunden wurde.10 Daneben hat Heraclius (vermutlich im 10. Jahrhundert) Vitruvs Rezept für die Herstellung von Ocker in sein Buch De coloribus et aribus Romanorum übernommen. Doch zusammenzogenen geben die Belege aus der Geschichte von Mathematik und Technik keine Begründung für die verbreitete Annahme, daß die technischen und mathematischen Teile von De architectura in der mittelal-

8 GERBERT, Geometria, PL139, Sp.93-151.
9 HERMANN VON REICHENAU, De mensura astrolabii liber, und De utilitatis astrolabii libri duo, PL143, Sp.379-412.

2. Vitruv in der Architektur des Mittelalters

Die karolingische Erneuerung

12 Vgl. SCHLIKKER, Hellenistische Vorstellungen (zit. Kap.II.1).
15 Valenciennes, Bibliothèque [municipale?], Ms.337, und Schlettstadt, Bibliothèque municipale, Ms.1153bis (beide Handschriften lagen mir nicht vor; für bibliographische Details vgl. Appendix 3).
eindeutige Beweise für eine theoretische oder praktische Bedeutung von *De architectura* in der karolingischen Baukunst ableiten. Denn zusammen- genommen zeugen die literarischen Quellen von der Spätantike bis gegen die Jahrtausendwende von einem nur dürftigen architektonischen Interesse an Vitruv, und die Annahmen, daß Vitruvleser wie Einhardt oder Vussin die Früchte ihrer Lektüre architektonisch umgesetzt haben, basieren auf vagen stilistischen Zuweisungen oder der ikonologisch fragwürdigen Voraussetzung, daß die Existenz eines architekturtheoretischen Textes gleichzeitig seine Benutzung bedeute.

20 LACTANTIUS, De opificio Dei 6, PL7, Sp.28.
23 München, Staatsbibliothek, Ms.13084, fol.64v, und Ms.14836, fol.90v; vgl. V. MORTET, La mesure et les proportions des colonnes antiques d’après quelques compilations et commentaires antérieurs au XIIe siècle, in: Bibliothèque de l’école des chartes 59.1898, S.56-72.
24 BEDA VENERABILIS, De templo Salomonis 18, PL91, Sp.735-808, Sp.779-785.
25 GERBERT, Geometria 82 und 87, PL139, Sp.93-151, Sp.148 und 149.
Einige Beispiele

Aufgrund einer Reihe von Messungen hat K. J. Conant zu zeigen versucht, daß in Cluny III (beg. 1089) die Länge des Gesamtbauwerks auf der vermeintlich bei Vitruv definierten perfekten Zahl beruht.30 Diese Behauptung kann man allerdings schwer nachvollziehen, da Vitruv lediglich die Zahlen 6, 10 und 16 als perfekt bezeichnet, nicht aber die in Cluny angeblich verwandte 496. Diese gilt zusammen mit 6 und 28 als eine perfekte Zahl, weil sie die Summe ihrer echten Teiler ist. Sie kann jedoch mithilfe der Angaben Vitruvs nicht ermittelt werden und geht wahrscheinlich auf Boethius zurück, der 496 tatsächlich als perfekte Zahl nennt.31 Ebensowenig plausibel ist Conants Annahme, daß eine in Cluny möglicherweise praktizierte Proportionierung durch die Quadratverdopplung auf Vitruv (6.3.3.) zurückgehe, denn diese Methode basiert auf dem in der mittelalterlichen Baupraxis üblichen Verfahren der Quadratur.

Auch andere Theorien über Vitruv in der Baukunst des Mittelalters wären eine Überprüfung wert; so beruhen Frankls Argumente auf einem unscharfen Verständnis architekturnhistorischer Begriffe wie dispositio und symmetria sowie auf der kaum beweisbaren Annahme, daß diese Begriffe, die auch durch andere lateinische Autoren überliefert sind, baupraktisch von Belang gewesen seien.32 Einer eingehenderen Überprüfung bedürften auch die von Carol Heitz angeführten Beispiele, denn für seine oft nur stilistischen und eher atmosphärischen Zuweisungen gibt es in den Quellen keine ausreichenden Belege.33

33 Vgl. Heitz, Vitruve, S.725 und passim; seine Belege aus MORTET, Recueil de textes, Bd.1, Nr.72 und 147, S.240-241 und S.376 sind zweifelhaft und seine sonstigen Zuweisungen kaum verifizierbar.
3. Vitruvs Proportionsfigur im Mittelalter

Allgemeinere Versuche, der Proportionsfigur Vitruvs eine Bedeutung in der Ästhetik des Mittelalters einzuräumen, basieren auf einem vermeintlichen oder tatsächlichen Nachvollzug mittelalterlicher Exegese. In diesem bis heute populären Modell wird der Mensch als der perfekteste Ausdruck der Natur und die Kirche als die vollkommenste Form der Kunst verstanden; dabei können beide auch als Abbild der Schöpfung Gottes interpretiert werden, so daß sowohl die Form des Kirchengebäudes als auch der Mensch und die Welt gegeneinander austauschbare und miteinander vergleichbare Bilder und Abbilder sind. Die Analogien zwischen Mikrokosmos (Mensch), Makrokosmos (Welt) und Kirchengebäude lassen sich mühelos aus mittelalterlichen Quellen zusammenstellen, und, so die heute weitgehend akzeptierte Argumentation, in einem weiteren Schritt mit Vitruvs Proportionsfigur vergleichen; denn sowohl die Welt und das Kirchengebäude als auch der homo ad quadratum haben vier Ecken. Außerdem beschreibe Vitruv den Menschen, der gemäß allgemeinem Konsens aus denselben vier Elementen bestehe wie das Universum. Von hier aus sei es nicht weit zum neuen Adam, der die vier Weltgegenden in seinem Namen repräsentiere, und auch die Kreuzigung Christi könne dann mit dem homo ad quadratum identifiziert werden, weil der Heiland mit seinen Händen und Füßen sowie mit seinem Kopf die vier Seiten des Universum berühre. Da nun aber Christus am Kreuz dem traditionellen Kirchengrundriß eingeschrieben werde, könne auch Vitruvs Mann im Quadrat, der ähnliche Assoziationen zuließe wie der gekreuzigte Heiland, als ein Symbol mittelalterlicher Architektur und als eine Figur von heilsgeschichtlicher Bedeutung verstanden werden. Ähnliches gelte für den homo ad circulum, dessen Symbolik auf die Darstellung der Göttlichkeit im Sinne platonischer Kreissymbolik verweise.34

Die im Zusammenhang der obigen Argumente immer wieder zitierten mittelalterlichen Autoren35 geben jedoch keine expliziten Hinweise darauf, daß Vitruvs Proportionsfigur tatsächlich in der oben zusammengefaßten Art und Weise interpretiert worden wäre. Damit aber sind diese Argumente keine verifizierbaren Darstellungen mittelalterlicher Ästhetik oder Architekturauffassung, sondern lediglich Auslegungen im Stil mittelalterlicher Exegese. Andererseits wird man kaum beweisen können, daß einige Exegeten im Mittelalter nicht in dem oben erläuterten Sinne spekuliert hätten; doch sind die quellenmäßigen Belege für solche Spekulationen bisher nicht aufgetaucht, und die erhaltenen Autoren äußern sich nicht mit hinreichender Deutlichkeit über die Vitruvischen Proportionsfigur.

Auch an einzelnen Kunstwerken oder in einzelnen Quellen hat man die Wirksamkeit der Vitruvischen Proportionsfigur und ihrer vermeintlich mikrokosmologischen Implikationen nachweisen wollen. So argumentiert S. Braunfels, daß der \textit{homo ad quadratum} als Kompositionsschema einer Christusdarstellung diente, die Hrabanus Maurus (ca.776-856) von seinem Ordensbruder Hatto hatte anfertigen lassen. Hrabanus sei ein Schüler des \textit{Vitruvkenners} Alkuin gewesen, und jener in der Handschrift dargestellte Christus sei eine freie Exegese der Vitruvischen Proportionsfigur, da die Anzahl der in Kopf, Füßen und Händen befindlichen Buchstaben des Gedichts (40, 16 und 10) auf die bei Vitruv überlieferten vollkommenen Zahlen 6 und 10 zurückginge.36 Diese Argumentation ist aus verschiedenen Gründen nicht plausibel; erstens gibt es keinen Hinweis darauf, daß Hrabanus Vitruv gelesen hat; zweitens verweist die von Hrabanus anderweitig verwandte Zahlensymbolik auf völlig andere Quellen37, und drittens ist die Zahlung der Buchstaben in Kopf, Händen und Füßen willkürlich. Abgesehen davon wäre die Frage zu klären, ob mittelalterliche Theologen tatsächlich den gekreuzigten Christus mit den physiologischen Angaben eines antiken Autors kombiniert hätten.

In ähnlicher Weise hat R. Wesenberg - in einem Versuch, dem er selbst lediglich den Status einer Hypothese zugestand - argumentiert, daß eine um 1000 entstandene Holzfigur, die Christus am Kreuz darstellt (das sogenannte Ringelheimer Bernwardskreuz), sowohl christologische Motive als auch die Mikrokosmosvorstellung und Vitruvs Proportionen miteinander verbinde.38 Wiederum wäre nach der theologischen Plausibilität einer solchen Verbindung zu fragen, doch selbst wenn man diese Frage zufriedenstellend beantworten könnte, verbliebe der widersprüchliche Umstand, daß die Proportionen der Figur keineswegs den Angaben Vitruvs folgen. Obwohl aufgrund des morschens Scheitels und des Bartes Christi genaue Messungen ohnehin entfallen, ist aus den publizierten Maßangaben ersichtlich, daß selbst die wenig verifizierbaren Maße nicht mit den Angaben Vitruvs übereinstimmen. Das gilt etwa für die Dimension der Füße im Verhältnis zur Gesamthöhe der Figur.

35 Vgl. Anm. 42.

37 Vgl. B. TAEGGER, Zahlensymbolik bei Hraban, bei Hincmar und im »Heliand«?, München 1970.

bezieht sich Wesenberg in seinen Berechnungen auf zwei verschiedene Gesamthöhen der Figur, einmal mit und einmal ohne das Suppedaneum.

Hier beruht bereits die Annahme, daß der Montecassiner Mönch Petrus Diakonus ein heute verlorenes Exzerpt Vitruvischer Proportionen angefertigt habe, auf einem bislang unbemerkt gebliebenen Irrtum.40 Aber auch gegenüber der übrigen Argumentation wäre größere Skepsis angebracht, da die im Architekturentwurf angewandte Geometrie auch den Gebrauch des Kreises voraussetzte und somit der Nachweis einer Kreisstruktur in jedem Grundriß weder ungewöhnlich noch notwendigerweise signifikant ist.41 Außerdem gibt es keinen eindeutigen Beweis für die Annahme, daß die in mittelalterlichen Quellen formulierten anthropomorph Architekturauffassung mit derjenigen Vitruvs identifiziert und dann praktisch wirksam wurde. Denn der im Mittelalter und auch später häufig ausgesprochene Vergleich des Gebäudes mit dem menschlichen Körper42 ist in zahlreichen Quellen völlig unabhängig von seiner Formulierung durch Vitruv nachweisbar, und eine direkte praktische Wirksamkeit dieser im Mittelalter allegorisch ausgelegten Auffassung dürfte schwer nachzuweisen sein - zumal es sich bei anthropomorphen Interpretationen dieser Art um Auslegungen a posteriori handelte.43 Abgesehen davon wäre zu klären, wie der vielleicht nur als Kopist tätige Kleriker Petrus Diakonus, der neben zahlreichen anderen Autoren auch Vitruv (teilweise) abschrieb, seine hierbei möglicherweise erworbenen architektonischen Kenntnisse der Organisation eines mittelalterlichen Klosterbaus hätte wirksam vermitteln können. Die ohne eine Klärung dieser Frage vorgebrachte Annahme, daß ein Vitruvexzerpt tatsächlich architektonisch wirksam geworden sei, scheint vielmehr auf einem sehr naiven Ikonologiekonzept zu beruhen, in dem ohne Berücksichtigung mittelalterlicher Bauorganisation und Entwurfsspraxis, eine direkte Verbindung zwischen Quelle und Bauwerk angenommen wird. Ohne weitere Aufschlüsse über die Bauorganisation in Monte Cassino ist kaum nachvollziehbar, wie ein Kleriker den Bauleuten die Verwendung eines in einem antiken Traktat vermeintlich beschriebenen Entwurfsschemas empfahl -

40 THIEME, Montecassino, S.127, bezieht diese Fehlinformation aus einer Verwechslung der Fußnoten bei H. KOCH, Vom Nachleben des Vitruv (Deutsche Beiträge zur Altertumswissenschaft 1), Baden-Baden 1951, S.15, Anm. 22.
41 Vgl. Kap. IX.
43 Vgl. MORTET, Recueil, Bd.1, S.159-160, Anm. 3.
zumal die Verwendung geometrischer Figuren wie Kreis und Quadrat jedem Bauhandwerker geläufig waren.

Ebenso ist der Heiligen Hildegard von Bingen nachgesagt worden, daß sie sowohl die Proportionslehre Vitruvs gekannt als auch die vermeintlich kosmischen Implikationen von *homo ad quadratum* und *homo ad circulum* interpretiert habe.\(^{44}\) Dies ist allerdings nicht eindeutig nachweisbar, denn Hildegard benutzt ein anderes Proportionssystem als Vitruv, wenn sie etwa den Kopf in drei Teile teilt (während Vitruv diese Aufteilung lediglich auf das Gesicht - unter Ausschluß der Haare - anwendet). Es bleibt als eine Übereinstimmung mit Vitruv die folgende Angabe:

Denn die Länge der menschlichen Gestalt und ihre Breite sind, wenn er Hände und Arme gleichmäßig von der Brust ausstreckt, gleicher Größe, wie ja auch das Firmament an Länge und Breite gleich ist. Und so hat der Mensch im Maß seiner Länge und Breite, die in ihm gleiche Verhältnisse haben, auch ein Maß für das Wissen um Gut und Böse, da er im Nutzen das Gute erkennt, im Unnützen indes das Böse.\(^{45}\)

\(^{44}\) DE BRUYNE, Esthétique médiévale, Bd.2, S.353-355; BRAUNFELS, Vom Mikrokosmos zum Meter; REUDENBACH, In mensuram humani corporis, S.662-664; zu den tatsächlichen Quellen vgl. H. LIEBESCHÜTZ, Weltbild der Hildegard.

\(^{45}\) Nam longitudo statuare hominis latitudoque ipsius, brachii et manibus aequaliter a pectore extensis, aequales sunt, quemadmodum etiam firmamentum aequalem longitudinem et latitudinem habet, quia etiam per mensuram longitudinis et latitudinis hominis, quae in ipsa aequales sunt, scientia boni et mali intelligitur, quae in utilitate bonum, in inutilitate vero malum scit. HILDEGARD VON BINGEN, Liber divinorum operum simplicis hominis 1.4.15., PL197, Sp.739-1038, Sp.814C; deutsche Übersetzung nach HILDEGARD VON BINGEN, Welt und Mensch. Das Buch »De operatione Dei« aus dem Genter Codex übersetzt und erläutert von Heinrich Schipperges, Salzburg 1965, S.86.

\(^{47}\) Vgl. HILDEGARD, Welt und Mensch, Ed. Schipperges, Abb.4 und 5.

Figur existieren, kann eine mögliche Verbindung zu den Angaben Vitruvs jedoch nicht überprüft werden.

4. Weitere Zeugnisse des Mittelalters

\(^{52}\) Vgl. ARISTOTELIS, Politica 2.1-3. (1260b-1262a); in diesem Kontext bedeutet »*civitas*« nicht Stadt, sondern Bürgerschaft.

um die allgemeine Darstellung des menschlichen Körpers mit einer Reihe physiologischer Angaben zu versehen. Ob Vincenz dabei die Proportionsfigur Vitruvs in einen heilsgeschichtlichen Zusammenhang hat stellen wollen, ist dem Text nicht zu entnehmen.

Die anderen drei Bezüge zu Vitruvs Proportionsfigur sind weniger eindeutig: Guillaume de Saint-Thierry beschreibt in seiner kurzen Abhandlung über Körper und Seele des Menschen eine Figur, die in dieser Formulierung tatsächlich nur aus Vitruv bekannt ist:

Die Naturkundler nämlich sagen, wenn der Mensch mit ausgestreckten Händen und Gliedern auf seinem Rücken liegt und der im Zentrum des Nabels gelegene Zirkel nach allen Seiten gewendet wird, trifft er [der Mensch] durch den ungehinderten Verlauf des Umfanges alle seine Teile und sich selbst gleichermaßen.54

Auch Ristoro d’Arezzos Beschreibung des Menschen weist einerseits einige Übereinstimmung mit den Angaben Vitruvs auf, weicht aber andererseits von diesen ab:

54 Dicunt enim physici quia si homo supinus extensis manibus et membris jaceat, si circunventrum in centro umbilici locatum undique circumvolvatur, inoffenso mensuriae cursor omnibus partibus suis par sit et aequalis inventatur. GUILLAUME DE SAINT-THIERRY, De natura corporis et animae libri duo 1, PL180, Sp.708B.
unten noch neun Teile; und dem Gesicht entsprechend proportioniert sie die Hände, die Füße, die Brust und den ganzen Körper. Und vom Gesicht an abwärts verblieben neun gleiche Teile, so daß die Figur zehn gleiche Teile erhielt. Und ihnen [den gelehrt en Zeichnern] war die Form eines wohlproportionierten und perfekten Körpers bekannt und geläufig, und das resultierte aus der Würde der Vorstellungskraft und aus dem verständigen Geist, die im Menschen niedergelegt waren.

Zweifel an Ristoros Rezeption Vitruvischer Proportionen werden auch durch andere Details bestätigt, denn er nennt als Gewährsmänner für seine Maßangaben weder Architekten im allgemeinen noch Vitruv im besonderen; vielmehr bezieht er sich auf die savi designatori, die die Dinge der Welt zeichneten. Mit diesen sind allem Anschein nach professionelle Zeichner gemeint, denen es oblag, für private oder öffentliche Auftraggeber Darstellungen aller Art anzufertigen. Hierbei konnte es sich um Landkarten und andere Dinge handeln, die berechnete Größenverhältnisse (secondo racione) erforderten. Möglicherweise bezieht sich Ristoro mit seiner Beschreibung der proportionalen Verhältnisse von Welt und Mensch auf eine maßstabsgerechte Darstellung technischer Art, denn die Aufgaben der genannten Zeichner bestanden (etwa im Fall von Land- oder Gebäudevermessung) auch in maßstäblichen Übertragungen. Diese Vermutung bestätigt Luca Pacioli, der Vitruvs Proportionsfigur und ihren Gebrauch durch die sogenannten Cosmographi erläutert. Auch Pacioli teilt die Länge des Menschen in zehn Teile, und in seinen Ausführungen wird klar, daß die beschriebene Proportionierung sich auf maßstäbliche Übertragungen bezieht, die unter

57 E lo corpo del mondo colla sua virtute, la quale elli ha dal sommo Dee, secondo rasonc dea essare toto proporcionato l’una parte a l’altra e l’uno membro a l’altro: come lo corpo de l’omo, che rascioneveleme colla sua virtute asieme dea respondare per proporzione l’una parte a l’altra e l’uno membro a l’altro, en tale mode che l’i capo, ne li pici ne l’altre membra non steno magiur ne menori che se convengano al corpo. E li savi designatori, a li quali fo dato e concedudo da la natura a divisare e a desegnare le cose del mondo, quando veniene a desegnare la figura de l’omo, dividino lo spazio per dechi parti uguali; e dalla parte de sopra faceno lo viso, e da inde en giu remanee nove cotanto, e per lo viso proporcionavano le mani, e li pici, e lo petto e tutto lo corpo; ed al viso en giu remanee nove parti uguali, si che la figura remanee dechi parti uguali. E era veduto e conosciuto da loro la forma della figura bene proporcionata e perfetta; e questo adevena per la nobilita de la imaginazione e de l’anima intellettiva, la quale fo fondata e il’omo. RESTORO D’AREZZO, La compositio del mondo, S.230 (d.i. 2.8.20.; vgl. Anm. 50).
59 Vgl. JOHN FLORIO, A Worlde of Words, Or Most Copious, and exact Dictionarie in Italian and English, London 1598 (Nachdruck Hildesheim/New York 1972), S.106: disegnatoris:desegnante; a map or model maker. Also a desseigner, a complotter, a cuonriuer, a drawuer, a painter.

Eine auffallende Ähnlichkeit mit Vitruvs Angaben zum homo ad circulum und homo ad quadratum findet sich in einem Abschnitt des um 1300 (?) entstandenen französischen Dialogs Placidés et Timéo. Der anonyme Autor eröffnet dort seine Ausführungen über den Mikrokosmos mit den folgenden Worten:

Von der Seele des Menschen sage ich euch, daß sie die kostbarste, die bedeutendste und würdigste Seele ist, die sei; denn der Mensch ist ein Lebewesen, so würdig, eine Kreatur, so bedeutend, so vornehm und so vermögend, daß die Philosophen sagen, der Mensch werde Mikrokosmus genannt, von griechisch micros, das minor auf lateinisch heißt, und von griechisch cosmos, das auf lateinisch mundus heißt; und folglich sagt man microcosmus, die minder Welt, denn im Menschen können die vier Elemente ersichtlich werden. Und wisse zuerst, daß ebenso wie die ganze Welt rund ist, so ist auch ein Mensch von gutem Maß rund. Und genauso muß ein Mensch von gutem Klaftermaß (taille de toise) mit seinen ausgestreckten Armen die gleiche Länge haben wie seine Höhe (son estant), um einen rechten Kreis zu bilden.60

Hierauf folgt ein möglicherweise aus Honorius61 stammender Vergleich einzelner Körperteile wie Kopf und Bauch mit Teilen der Welt wie Himmel und Meer.

Auf den ersten Blick erscheint der hier zitierte Abschnitt zweifellos wie eine mikrokosmisch inspirierte Paraphrase der Vitruvischen Proportionsfigur. Doch auch in diesem Fall gibt es einige Indizien, die Zweifel an einer Rezeption des homo ad quadratum und des homo ad circulum rechtfertigen. Denn es kann sich hier möglicherweise um eine Kombination gängiger Vorstellungen und verschiedenster Quellen handeln, ohne daß Vitruvs Angaben unbedingt in Betracht gezogen werden müßten. So bezieht sich der anonyme Autor mit den Worten de bonne taille de toise auf die altfranzösische Bezeichnung für das Klaftermaß.62 Dessen Auslegung im Sinne des Mikrokosmos ist eindeutig bei Solinus formuliert, und lediglich die genannte wichtige Rundung (droit rondeau) verweist durch die gleichzeitige Erwähnung des Klafters auf Vitruv. Allerdings könnte die Kombination Kreisfigur und Klafter auch auf eine Synthese verschiedener Quellen (wie etwa Solinus) mit eigenen Anschauungen hinweisen. Diese Möglichkeit einer Kombination anderer Quellen mit selbständig entwickelten Ideen sollte erwogen werden, da die bis heute bekannten zweifelsfreien mittelalterlichen Interpretationen Vitruvs keine

60 De l’ame de l’homme vous di je que c’est le plus précieuse ame, le plus haute et le plus digne qui soit, pour ce que homme est si digne beste, si haute creature, si noble et si poissans, pour ce dirent les philosophes que homs estoit appelés microcosmus, de micros en grec, qui vaut a dire minor en latin et de cosmos en grec, qui vaut a dire mundus en latin; et donques c’est a dire microcosmus, le menre monde, pour ce que en homme peuvent estre entendus les quatre elemens. Et sachietz premièremen que tout aussi comme tous li mondes est reons, tout aussi homs de bonne taille est rons. Et tout autant doit avoir homs de bonne taille de toise en estendue de ses bras comme de long en sont estant pour faire droite rondeau. Placidés et Timéo ou li secrés as philosophes. Edition critique avec introduction et notes par Claude Alexandre Thomasset, Paris 1980, S.93 (Nr.214).

Eine von Vitruv allem Anschein nach unabhängige Beschreibung eines Mannes im Kreis schließlich findet sich in Alberts des Großen zwischen 1250 und 1270 verfaßter Schrift *De animalibus*:

Wird er [der Zirkel] mit dem feststehenden Fuß im Nabel aufgesetzt und in der Entfernung des ausgestreckten Armes und der Hand bis zur äußersten Länge des Mittelfingers herumgeführt, dann berührt dieselbe Peripherie an den Füßen den äußersten Punkt der großen Zehen - vorausgesetzt der Körper ist gerade ausgespannt; und die Breite von Oberarm zu Oberarm wird ein Drittel der Gesamtkörperhöhe vom Scheitel bis zur Sohle betragen, und darüber bleibt eine Handbreit, gemäß dem, was meßkundlich (gyometrice) *palmus* genannt wird, also

64 PLATON, Timaeus 16 (44d-45b).
65 LACTANTIUS, De opificio Dei vel formatione hominis 8, PL7, Sp.10-78, Sp.34.
66 Ebd. 5-7, Sp.24-33, bes. Sp.25 und Sp.33.

Die Indizien, die in diesem Falle eine von Vitruvs homo ad circulum unabhängige Formulierung anzeigen sind folgende: Wenn Albert Vitruv zitiert, tut er dies in den bekannten Fällen wörtlich, bei gleichzeitiger Nennung seiner Vorlage, De architectura (vgl. Appendix 3); in De animalibus stützt sich Albert oft wörtlich auf medizinische Autoren ursprünglich arabischer Provenienz, doch für den zitierten Abschnitt sind plötzlich keine direkten Vorbilder mehr nachweisbar 68; dieser Umstand schließlich legt einen Schluß nahe, den auch der Wortlaut des zitierten Abschnitts stützt: daß Albert eine ihm selbst gegenwärtige Anschauung beschreibt.

5. Atlas

67 Adhuc autem pede immobili circumposito in umbilico et circumdueto ad spatium extensi brachii et manus usque ad medi digiti longitudinem taget eadem peryferis extremitatem pollicium in pedibus, si recte corpus extendatur, et latitudo ab humero in humerum subtripla erit longitudini totius corporis a vertice summo capitatis usque ad plantam pedis: et insuper habet palsum secundum quod palmus geomctrice dicitur latitudo volae sive pectinis manus: et si altier est, error est et miraculum. Spatium etiam a foramine colli usque ad umbilicumaequatur spatio quod est ab umbilico usque ad finem pectoris. ALBERTUS MAGNUS, De animalibus libri XXVI nach der Cölner Urschrift. Herausgegeben von Hermann Stadler, 2Bde., Münster 1916-1920, Bd.1, S.176 (1.2.26).

68 Vgl. die Nachweise in der zitierten Ausgabe von Stadler.

69 Vgl. LUCILLIUS PHILALTHAEUS, In III. libros Aristotelis De coelo, & mundo, commentar[i] [...] Venedig 1565, fols. 250, 502 und fol.547; vgl. Kap. XII.

Nicole Oresme kannte neben anderen antiken Autoren auch Vitruv (vgl. Appendix 3), und das in seinen zahlreichen Schriften ausgedrückte Interesse an technischen und wissenschaftlichen Fragen gibt Grund zu der Annahme, daß er De architrectura gründlich genug gelesen hatte, um auch mit Vitruvs Proportionsfigur vertraut gewesen zu sein. Wenn diese Figur, wie bis heute angenommen wird, tatsächlich einen gestaltenden Einfluß auf das mittelalterliche Denken (was immer das sei) gehabt hat, dann würde man eigentlich ein Interesse Oresmes an ihr erwarten. Da dies offensichtlich nicht der Fall ist, sollte man gegenüber der vermeintlich symbolischen Kraft der Proportionsfigur im Mittelalter (und in anderen Epochen) skeptischer sein.

72 Selon Aristote et Averrois, pour declarer et entendre ces choses, il convient yimaginer un tres grand homme [...], et soit nommé Atlas et soit estendu ou ciel en la maniere que il est yci mis en figure, et moeue le ciel. Et pour ce que mouvement circulaire selon ordre de procede de deestre en venant vers senestre, il convient que la deste de cest homme soit en orient et son devant vers midi, car ainsi procede le mouvement du ciel, et sa senestre sera en occident. Et donques s'ensuit il par necessite que la teste de cest homme soit vers la pole antartique [...] et que ses piés soient vers le pole ou pole antique [...]. Ebd., S.328; vgl. ARISTOTELES, De coelo 2.1-2. (283b-286a), bes. 2.2. (285a).
6. Zusammenfassung

IV. THEORETIKER UND PRAKTIKER IM QUATTROCENTO

Abgesehen von Leon Battista Alberti, der trotz seiner kritischen Haltung gegenüber Vitruv dessen *De architectura* vor allem für technische Details benutzte, setzten sich die bedeutendsten Kunsttheoretiker des Quattrocento mit dem *homo ad circulum* und dem *homo ad quadratum* auseinander. Diese Auseinandersetzungen sind unterschiedlicher Art und repräsentieren das sich wandelnde Interesse der Künstler und Theoretiker an der Überlieferung des klassischen Altertums. Allerdings waren nicht alle im 15. Jahrhundert erörterten Proportionsfiguren notwendigerweise den Angaben Vitruvs verpflichtet.

1. Mariano Taccola und Michele Savonarola

Männer im Kreis, die nicht unbedingt auf Vitruvs *homo ad circulum* zurückgehen, hat es nicht nur im Mittelalter gegeben, denn neben den Atlasdarstellungen stammen möglicherweise auch andere Figuren dieser Art aus von Vitruv unabhängigen Traditionen (vgl. Kap. I und III). Zu diesen gehört ein in Kreis und Quadrat eingeschriebener Mann, den Mariano Taccola (1382-ca.1453) zwischen 1427 und 1453 in seinem Traktat *De ingeneis* abbildete.1 Ein Mann »hängt« aufrecht in einem Kreis, dem ein Quadrat einbeschrieben ist (vgl. Abb. 5). Er veranschaulicht die ebenfalls abgebildeten Messwerkzeuge Zirkel, Senkblei und Winkelmesser sowie einen entlang des Kreisdurchmessers eingetragenen Proportionskanon. Damit weist der Autor auf den Umstand hin, daß alle Maße vom Menschen abgeleitet werden:

Er, der alles weiß, schuf mich. Und ich habe alle Maße bei mir, sowohl vom hohen Himmel als auch von der Erde und der Unterwelt. Und wer sich selbst versteht, der versteht viel. Und er hat in seinem Verstand das engelhafte und das natürliche Buch verborgen.2

Die achtzehnte Unterteilung des Kreisdurchmessers erinnert zunächst an den Kanon Vitruvs, doch die Figur selbst erhält lediglich sieben von diesem Einheiten. Nicht der Nabel, sondern die Scham bildet den Mittelpunkt des Körpers, und trotz des eingetragenen Quadrats sind die Arme nicht ausgestreckt. Es gibt auch keine anderen Hinweise in Mariano Taccolas Traktat, die auf eine Kenntnis Vitruvs schließen ließen.3 Vielmehr illustriert der Autor denselben Sachverhalt, den auch Vitruv mit seiner Proportionsfigur veranschaulichte, nämlich den Umstand, daß Maße einerseits vom Menschen genommen, andererseits aber auch mithilfe der Geometrie (vgl. Kap. II) gewonnen werden können. Denn der Mensch enthält die anthropomorphen Standardmaße, und die

1 Vgl. F. D. PRAGER/G. SCAGLIA, Mariano Taccola and his Book *De ingeneis*, Cambridge (Mass.)/London 1972, S.42, Abb.9 (d.i. 1, fol.36v), und S.167.

2 Vgl. die nicht ignorat me creavit. Et omnem mensuoram mecum habeo tam super celestium quam terréstrium ac inferiorum. Et qui se ipsum inteligit multa inteligit. Et librum angelicum et naturalem in mente eius habeat asconditum. Zitiert nach PRAGER/SCAGLIA, Mariano Taccola, S.167.

3 Vgl. PRAGER/SCAGLIA, Mariano Taccola, S.168.

Ein weiteres Beispiel einer wahrscheinlich von Vitruv unabhängigen Figur im Kreis findet sich bei Michele Savonarola (1384-1464), dem in Padua geborenen Großvater Girolamo Savonarolas.4 Zu den prägenden Ereignissen seiner Karriere zählten ab 1405 medizinische Studien an der Universität zu Padua und ab 1440 seine Tätigkeit als Leibarzt der D’Este in Ferrara. Neben seinen beruflichen Interessen hatte er offenbar auch eine Vorliebe für die zeitgenössische padovanische Malerei, denn er widmete den Malern dieser Stadt ein Kapitel seines biographischen Libellus de magnificis ornamentis regiae civitatis Paduae von 1447.5 Diese Neigung drückt Michele auch in seinem um 1442 (?) entstandenen Speculum physionomiae aus; dort berichtet er zunächst ausführlich von den Symmetrien und Proportionen, die die ihm bekannten Maler Paduas benutzen.6 Der von ihm bis in kleinste Details erörterte Proportionskanon, der zu Beginn des 16. Jahrhunderts von Pomponius Gauricus ausführlich exzerpiert wurde7, ist prinzipiell mit dem von Cennino Cennini aus der Werkstatt des Trecento überliefernten Schema identisch.8 Dieser Kanon, den in verschiedenen Varianten sowohl die Künstler des 15. Jahrhunderts wie Lorenzo Ghiberti, Filarete und Francesco di Giorgio (s.u.) als auch Theoretiker

6 MICHELE SAVONAROLA, Speculum physionomiae, Paris, Bibliotheque Nationale, Ms.7357, fols.1r-67r, fol.54v-58r; ich verdanke diesen Hinweis Michael Baxandall.

Neben seinen ausführlichen Bemerkungen zu den Proportionen des Menschen berichtet Savonarola auch von einem Mann im Kreis, dessen Charakteristika die zeitgenössischen Maler kennen:

[...] Der Mensch ist insofern rund, als seine Breite seiner Höhe gleich. Von daher ist jene Linie, die die Länge des Menschen mißt, gleich mit derjenigen, die seine Breite angibt. Und deshalb entsteht [aus diesen Linien], wenn sie kreuzweise gelegt werden und man am Schnittpunkt den Fuß des Zirkels einsetzt, eine Kreisfigur. Darum sollen auch die Jungen, wenn sie sich mit den Händen am Boden und mit in die Höhe erhobenen und ausgestreckten Schenkeln kreisförmig bewegen, ein Rund hervorzuhalten. Und es wird gesagt, daß man so ein Rad schlage.9

2. Lorenzo Ghiberti

10 LORENZO GHIBERTI, Denkwürdigkeiten (I Commentarii), herausgegeben und erläutert von Julius von Schlosser, 2Bde., Berlin 1912.

Die Produktion von Kunsttheorie war für Ghiberti eine von künstlerischer Qualität abhängige Erscheinung, denn er schreibt gegen Ende seines zweiten Abschnitts, daß die antiken Bildner und Maler es zu einer Kenntnis ihrer Fertigkeiten gebracht hatten, die es ihnen erlaubte, Bücher über deren Prinzipien zu verfassen. Und diese Bücher »spendeten denen größte Erluchtung, die nach ihnen kamen [und] statteten die Kunst mit jenem Maß aus, das die Natur bietet.« Jenes Maß (misura), das die Natur bietet, entwickelte Ghiberti in den später entstandenen Notizen zum dritten Abschnitt zu einer die Begriffe *proporzione* und *proporzionalità* umfassenden Terminologie, die der Optik Alhazens entnommen ist. Proportion und Proportionalität bezeichnen

14 GHIBERTI, Commentarii, Bd.1, S.31 und S.35.
15 Vgl. GHIBERTI, Commentarii, Bd.2, S.63-96; SCHLOSSER, Leben Ghibertis, S.170-190; HURD, Ghiberti's Treatise on Sculpture.
17 [...] dieron grandissimo lume a quelli che uennero poi, ridusseron l'arte con quella misura che porge la natura. GHIBERTI, Commentarii, S.31 (1.31., fol.87).
18 GHIBERTI, Commentarii, Bd.1, S.105-106, und Bd.2, S.91-93.
hierbei die Verhältnisse der Teile - etwa des menschlichen Körpers - zueinander und zu einem vorgestellten Ganzen. Die Erfüllung oder Anwendung beider Begriffe garantiert zwar, wie Ghiberti betont, die Schönheit, doch fügt er diesen Begriffen noch den der *intentione* hinzu, die als eine »Absicht« der gesamten Operation zugrundeliegt. Diese *intentione*, die ebenfalls aus Alhazens Optik stammt, ist allem Anschein nach ein Prinzip, das demjenigen der Proportion im abstrakten Sinne voransteht; allerdings läßt der fragmentarische dritte Abschnitt in Ghibertis *commentarii* keine weiteren Schlüsse über eine theoretische Entwicklung dieses abstrakten Begriffs zu.

Und beginnen wir, der männlichen Figur Gestalt zu geben mit jener Kunst und Bestimmung sowie mit Proportionen und Symmetrien, die die vornehmsten antiken Bildhauer und Maler benutzten; und errichten (porremo) wir die Figur des Kreises, wie sie in alter Zeit durch (per) sie (loro [die antiken Bildnern]) mit der Geometrie (gismetria) und den Maßen gefunden worden ist [...] 19.

Mit diesem Passus bezieht sich Ghiberti sowohl auf die Tradition der bei Vitruv und Plinius gelobten antiken Künstler als auch auf jenes Prinzip, das mit den Begriffen *proportio* und *symmetria* bezeichnet wird. Ebenso prinzipiell versteht er die *gismetria* und den Kreis, die beide der Konstruktion der menschlichen Figur zugrundeliegen. Hierbei repräsentiert der Kreis ein für das Maß des Menschen notwendiges Prinzip, denn Ghiberti verneint später eine direkte und anschauliche Verbindung zwischen dem menschlichen Körper und jener geometrischen Figur:

[...] diese Sache scheint mir schwierig, weil der Mensch in den Beinen sich nicht so sehr öffnen kann, daß er den Kreis berührt. Weit öffnet sich der Mensch in den Armen, nicht ebenso weit kann er sich in den Füßen öffnen. Nochmals, es scheint mir nicht der Nabel der Mittelpunkt [des menschlichen Körpers] zu sein; es scheint mir, er müsse dort sein, wo das Schamglied ist [...]. 20

20 [...] la qual cosa mi pare difficile però che l’uomo non si può tanto aprire nelle gambe, esso possa toccare el circulo. Molto s’apre l’uomo nelle braccia: non si può tanto aprire ne’ piedi. Ancora non mi pare del centro sia el bellico, parmi debba essere dove è l’embro genitale [...]. Ghiberti, Commentarii, Bd.1, S.231; Übersetzung nach SPEICH, Proportionslehre, S.143.
Im Gegensatz zu Luca Pacioli hatte Ghiberti die den homo ad circulum betreffenden Angaben offenbar einer Überprüfung unterzogen. Dies gilt möglicherweise nicht für seine Haltung gegenüber den widersprüchlichen Angaben Vitruvs, die den Abstand vom Scheitel und vom Haaransatz bis zur Brust betreffen (vgl. Kap. II), denn er läßt in seinem Exzerpt des Vitruvischen Proportionskanons den entsprechenden Abschnitt aus.21

3. Antonio Averlino Filarete

Antonio di Pietro Averlino, genannt Filarete, wurde um das Jahr 1400 in Florenz geboren und erhielt dort seine Ausbildung als Goldschmied und Bronzegießer. Als sein plastisches Hauptwerk gilt die 1445 vollendete Bronzetür für das Hauptportal von St.Peter in Rom. Nach Tätigkeiten in eben dieser Stadt, in Oberitalien und in Venedig wurde er 1451 Ingenieur und Architekt am Hof Francesco Sforzas in Mailand. Außerdem war er beteiligt an der Planung und Ausführung des Domes zu Bergamo und des Mailänder Ospedale Maggiore. Über Filaretos Ableben gibt es keine Nachricht, doch kann man annehmen, daß er nicht viel später als 1469 gestorben ist.23 Filaretos sogenannter Trattato di architettura, der als erstes volkssprachliches Architekturtraktat gilt, ist 1458 begonnen und hauptsächlich zwischen 1461 und 1464 verfaßt worden.24 Er war ursprünglich Francesco Sforza, doch dann, nach dessen Tod, Piero de' Medici gewidmet und zielte auf ein an Architektur in-

21 Ghiberti, Commentarii, Bd.1, S.228.
22 Ebd., S.228-229.
23 Vgl. P. TIGLER, Die Architekturtheorie des Filarete (Münchner Beiträge zur Kunstgeschichte 5), S.1-6; G. GERMANN, Einführung in die Geschichte der Architekturtheorie, Darmstadt 1980, S.64-77.
24 ANTONIO AVERLINO DETTO IL FILARETE, Trattato di architettura. Testa a cura di A. M. Pinoli e L. Grassi, 2Bde., Mailand 1972.

In diesem Modell, das auf der Kenntnis des von Vitruv beschriebenen Idealarchitekten beruht, spielen Maß und Proportion sowie die Orientierung an den vorbildlichen Bauwerken der Antike eine entscheidende Rolle. Deshalb beginnt Filarete seine Abhandlung mit einer ausführlichen Beschreibung der misure und ihrer anthropomorphen Herkunft; diese bilden einen zentralen Bestandteil des Bauens:

> Weil ich wußte, daß Du ausgezeichnet bist und Dich an Tugend sowie an würdigen Dingen ergötze - wie es in ausgezeichneter Weise üblich ist bei erlauchten Gemütern und besonders bei jenen [Dingen], die unaufhörlichen und gebührenden Ruhm verleihen - oh großartiger Piero de' Medici, in Anbetracht dessen gedachte ich Dich [damit] ergötzen zu können, die Arten und Maße des Bauens anzuhören.29

In den dann folgenden Abschnitten des ersten Buches betont Filarete die Relevanz von misure, disegno, proporzioni, qualità und modi del edificare sowie anderer Dinge (wie Baustoffen). Filaretos architektonische Grundbegriffe sind jedoch nicht immer scharf voneinander unterschieden; so bezeichnet die qualità die fünf verschiedenen Proportionstypen der menschlichen Gestalt, von denen nur die drei mittleren Größe, nicht aber die Zwerge und Riesen Anspruch auf Schönheit erheben können.30 Gleichzeitig zieht Filarete eine direkte anthropomorphe Verbindung von den drei schönen Gestalttypen zu der dorischen, ionischen und korinthischen Säulenordnung. Diese können ebenfalls mit dem Begriff misure belegt werden, so daß die durch

26 FILARETE, Trattato, fol.8, S.41
27 Ebd., fol.7-8, S.39-41.
29 Perché ho conosciuto tu essere eccellente e dilettarti di virtù e di cose degne, come degnamente è usanza negli animi gentili, e massime di quelle che danno perpetua e degna fama, o magnifico Piero de' Medici, considerando questo, io stimai doverti piacere intendere modi e misure dello edificare. FILARETE, Trattato, fol.1, S.3.
qualità unterschiedenen Säulenordnungen auch unter dem Terminus misure firmieren, denn sie haben Proportionen (proportioni) gemäß ihren Maßen und Gattungen. Gleichzeitig bezeichnen die misure auch die beim Bau verwandten antropomorphen Standardmaße wie Elle, Fuß oder Zoll. 31 Sowohl die metaphorisch aufgefaßte anthropomorphe Herkunft und Gestalt der Säulen als auch ihre unmittelbar verstandenen Maße und Proportionen sind mit dem menschlichen Körper und seiner Unterteilung veranschaulicht. Dadurch schließt sich der Kreis, und der Antropomorphismus wird zum verbindenden Glied der architektonischen Grundbegriffe Filaretes. Er diente möglicherweise auch dazu, die Widersprüche zwischen einer traditionellen architektonischen Praxis und der als modellhaft empfundenen, aber nicht immer konkret umsetzbaren Antike zu überwinden. 32 In diesem Sinne war Vitruvs Proportionsfigur eine naheliegende Formel, deren Antropomorphismus Antike und Gegenwart anschaulich verband.

Filarete varierte die direkte anthropomorphe Verbindung zwischen dem menschlichen Körper und dem Gebäude auf verschiedenste Art; so vergleicht er die unendliche Vielfalt menschlicher Gestalten mit derjenigen verschiedener Gebäude, oder die Aussagekraft des menschlichen Gesichts mit der architektonischen Bedeutung der Fassade eines Baus. 33 Schließlich zieht er sogar eine Parallele zwischen dem Nahrungsbedürfnis des Menschen und der Notwendigkeit, ein Gebäude durch gewissenhafte Unterhaltung vor dem Verfall zu retten, denn falls dies nicht geschehe, dann verende das Gebäude ebenso wie ein hungrnder Mensch. 34 Die Vielfalt der anthropomorphen Auffassung der Gebäude faßt Filarete schließlich mit folgender Bemerkung zusammen:

In seiner Formulierung des architektonischen Anthropomorphismus greift Filarete auch auf Vitruv zurück, wenn er schreibt, daß dieser Recht habe, »unsere [d.i. Filaretes] Meinung zu bestätigen, daß alle Maße vom Menschen

31 Ebd., fol.4r v, S.21-23.
33 Ebd., fol.5r, S.25.
34 Ebd., fol.6r, S.29-30.
35 Tu hai veduto, come t’ho mostrato, che per similitudine lo edificio si è dirivato da l’uomo, cioè dalla forma e membri e misura. Ebd., fol.6r, S.28.
36 Ebd., fol.4r v, S.21-23.
38 FILARETE, Trattato, fol.47r, S.182.
abgeleitet seien.«39 Für Filarete also ist Vitruvs Anthropomorphismus eine Bestätigung seiner eigenen, aus der Tradition des Mittelalters stammenden anthropomorphen Gebäudeauffassung. Viel weiter geht er mit seinem Interesse an der Proportionsfigur Vitruvs nicht, denn er schenkt dem Klaftermaß nur eine beiläufige Bemerkung und dem eigentlichen Kanon des antiken Architekten überhaupt keine Aufmerksamkeit; vielmehr zitiert er eine Variante des von Cennino Cennini bis Guillaume Philandrier beliebten Werkstattkanons40 und bezweifelt, vor ihm schon Ghiberti, Vitruvs Angabe, daß der Nabel der Mittelpunkt des Menschen sei.41 Doch immerhin, eine generelle Bemerkung scheint er dem homo ad quadratum und dem homo ad circulum Vitruvs zu widmen: »Was immer sei, der Kreis, das Rund und das Quadrat sowie jedes andere Maß ist vom Menschen hergeleitet.«42 Gemäß dieser Formulierung waren also der Kreis und das Quadrat als Maße zu verstehen; damit bezieht sich Filarete allem Anschein nach auf den bei Vitruv selbst und später bei Cesare Cesariano ausgeführten Umstand, daß im architektonischen Entwurf die Dimensionen nicht nur in Form von Standardmaßen angegeben, sondern auch mit Hilfe der Geometrie und ihrer Figuren konstruiert werden können. Die Figur des Menschen verdeutlicht dabei den Zusammenhang zwischen dem anthropomorph gewonnenen Standardmaß einerseits und der anthropomorph veranschaulichten Maßbestimmung durch die Geometrie andererseits.

Der praktische Wert des Anthropomorphismus ist begrenzt, denn lediglich die anthropomorph erklärte und tatsächlich auch praktisch nachvollziehbare Herleitung der Standardmaße aus dem menschlichen Körper hat eine unverzichtbare Bedeutung in der architektonischen Praxis. Nichtsdestoweniger muß der Vergleich des Gebäudes mit dem menschlichen Körper eine Bedeutung gehabt haben, die über das rein praktische Maß hinausging. Der Topos taucht in den ex posteriori Architekturinterpretationen mittelalterlicher Exegenen gelegentlich auf (vgl. Kap. III.3) und findet im Trattato Filaretos sowie in den etwas später entstandenen Trattati Francesco di Giorgio Martinis die bis dahin extensivste Ausführung. Im Fall Filaretos, also im Zusammenhang des höfischen Bestrebens nach Kurzweil und Ergötzung, diente diese Denkfigur (ähnlich wie das Wort »Denkfigur«) der sprachlichen Vergegenwärtigung eines außersprachlichen Zusammenhangs mithilfe eines verständlichen, einprägsamen und daher sowohl geläufigen als auch populären Vergleichs. Der Anthropomorphismus gewährleistet die Mitteilbarkeit einer sonst hauptsächlich visuell kommunizierten Materie; deren kurzweilige Erörterung im ergötzlichen Rahmen höfischer Unterhaltung erforderte einen kompetenten Moderator, der aufgrund architektonischer Qualifikationen die laienhafte Auseinandersetzung mit der Baukunst zu stimulieren vermochte. Vor dem Hintergrund dieses kurzweiligen Unterhaltungsprogramms für einen fürstlichen Hof kreierte Filarete die Rolle des Architekten, der durch seine humanistischen Verbindungen im höfischen Ambiente theoretifähig werden und durch seine Theoriefähigkeit zur Unterhaltung der Hofgesellschaft beitragen konnte. Ob dieses Modell bei Hofe tatsächlich funktionierte, ob die Höflinge sich

39 [...] a confermare il nostro proposito che tutte le misure siano dirivate da l'uomo [...]. Ebd., fols.3r-4r, S.20.
40 Ebd., fol.3r, S.19-20.
41 Ebd., fol.4r, S.20.
42 Ma quello che sia, el circulo, tondo, e'l quadro e ogni altra misura è dirivata da l'uomo. Ebd., fol.4r, S.21.

4. Francesco di Giorgio Martini

Francesco di Giorgio Martini (1439-1501) war der Sohn eines Sienesers Geflügelhändlers und ein vielseitig ausgebildeter Ingenieur, Festungsbaumeister, Bildhauer, Maler und Architekt. Er arbeitete für die Kommune von Siena, für Alfonso von Kalabrien und besonders für den Hof der Montefeltre in Urbino.\(^{43}\)

Francescos Trattati di architettura ingegneria e arte militare liegen in zwei stark unterschiedlichen Versionen und in mehreren, allerdings nicht autographischen Handschriften vor.\(^{44}\) Die erste Gruppe von Manuskripten mit den frühen und theoretisch weniger ausgereiften Versionen der Trakte umfaßt den Codex Saluzzianus 148 (Turin, Biblioteca Reale), den Codex Ashburnhamianus 361 (Florenz, Biblioteca Laurenziana) sowie - allerdings mit Einschränkungen - den Codex Spencer 129 (New York, Public Library). Hinzu kommt möglicherweise eine weitere Abschrift in einer Venezianischen Handschrift.\(^{45}\) Die frühesten dieser Versionen, der Saluzzianus und der Ashburnhamianus, sind mit ziemlicher Sicherheit vor 1476 verfaßt worden, also noch ehe Francesco gegen 1477 in die Dienste Federigo da Montefeltres trat. Der Codex Spencer entstand während Francescos erster Tätigkeit für Alfonso von Kalabrien in den Jahren 1479 bis 1480.\(^{46}\)

Chronologisch an letzter Stelle stehen jene beiden Handschriften, die spätere und theoretisch ausgereiftere Versionen der Trattati enthalten, die Codices S.IV.4. (Siena, Biblioteca Communale) und Magliabechianus II.I.141. (Florenz, Biblioteca Nazionale). Das Florentiner Manuskript ist zwischen 1489 und 1492 zu datieren, denn Fra Giovanni Giocondo und Antonello da Capua wurden im Jahre 1492 in Neapel für Illustrationen zu jenem Codex bezahlt.\(^{47}\) Der Sieneser Codex entstand vermutlich etwas früher, da dessen Tafel der Mondphasen mit dem Jahr 1489 beginnt und da nur der Magliabechianus, nicht aber der Sieneser Codex Bemerkungen über jene antiken Ruinen enthält, die Francesco erst 1491

\(^{45}\) Venedig, Biblioteca Marciana, Ms. It.IV. 3-4 (5541), fol.1\(^{v}\) [benutzt in einer photographischen Reproduktion, Courtauld Institute, Conway Library, London].

\(^{47}\) Vgl. BETTS, Chronology of Giorgio’s Treatises.

Dem Anthropomorphismus versucht Francesco durch seine Vitruvrezeption eine neue Qualität zu geben; mit Bezug auf jenes anthropomorphe Verständnis von Architektur, das Vitruv an verschiedenen Stellen (3.1. und 4.1.6.) formuliert, konstruiert er eine direkte Verbindung von einer aktuellen architekturtheoretischen Auffassung zu der als vorbildlich angesehenen klassischen Antike. Im Gegensatz zu einer geometrisch-graphischen oder verbalen Veranschaulichung des Zusammenhangs zwischen Antike und Gegenwart ermöglichte der Anthropomorphismus eine unmittelbare und anschauliche Vergegenwärtigung der Verbindung zwischen Ideal und Realität, zwischen Vorbild und aktuellem Entwurf. In diesem Sinn versteht er auch Vitruvus homo ad circulum und homo ad quadratum:

Die Stadt hat Zusammensetzung, Maß und Form des menschlichen Körpers; deren Umkreis und Unterteilungen werde ich nun genau beschreiben. Zuerst ist zu

48 Ebd., S.13.
51 FRANCESCO DI GIORGIO, Trattati, Bd.1, S.3-4.

Daß es sich bei dieser Auslegung der Vitruvischen Proportionsfigur um die Variante des unmittelbar verstandenen Anthropomorphismus handelt, verdeutlicht der dann folgende Passus:

Und wenn man in einer Stadt keine Festung errichten muß, so gibt man ihren Platz der Kathedrale, die mit ihrer vorgelagerten Piazza zum Rathaus in Beziehung steht. Und auf der gegenüberliegenden Seite und Rundung des Nabels [sei] die zentrale Piazza; andere Plätze und Kirchen sind gemäß den Händen und Füßen anzulegen. Und so wie Augen, Nase, Ohren, Mund, Gedärme sowie andere Innereien und Glieder im Innern des Körpers zu seinem Bedürfnis und Nutzen angeordnet sind, so muß man es auch bei der Stadt beachten [...].54

In diesem Zusammenhang geht es Francesco di Giorgio also weder um den geometrischen Wert der Proportionsfigur noch um deren anthropomorph hergeleitete Standardmaße; sein Interesse gilt vielmehr einer möglichst anschaulichen Vergegenwärtigung eines anthropomorphen Prinzips, das sich auf alle Bereiche der Architektur erstreckt.

Francescos Illustration der Vitruvischen Proportionsfigur steht in keinem Verhältnis zu dem eben zitierten Text; dieser ist vielmehr in einer zu Beginn des Codex Saluzzianus eingeführten Zeichnung verdeutlicht, die einen aufrecht stehenden Menschen umgeben von einer Stadtmauer zeigt. Die Illustration von homo ad quadratum und homo ad circulum selbst, die sowohl im Codex Saluzzianus (fol.6v) als auch im Codex Ashburnhamianus (Abb. 6) neben dem eben zitierten Passus steht, scheint keiner direkten Veranschaulichung der beschriebenen Anschauungen zu dienen. Die beiden Zeichnungen55 vereinigen den homo ad quadratum und den homo ad circulum in einer Abbildung, wobei Francesco gröberen Wert auf die Veranschaulichung des Mannes im Quadrat legte. In beiden Fällen ist ein mit ausgebreiteten Armen aufrecht stehender Jungling in locker kontrapostischer Haltung so in die geometrischen Formen eingeschrieben, daß der Nabel sich nicht im Zentrum des Kreises befindet. Im Gegensatz zur Beschreibung im begleitenden Text liegt die Figur auch nicht auf der Erde; sie steht vielmehr aufrecht, wobei die Hände des Jünglings im Codex Ashburnhamianus die Kreislinie, im Codex Saluzzianus hingegen die Quadratseiten berühren. Die geometrischen Implikationen der Figur (vgl. Kap.

53 Avendo la città ragion, misura e forma del corpo umano, ora delle circunferenze e partizioni loro precisamente descritter. In prima è da sapere steso in terra il corpo umano, posto un filo a l’imbello, alle stremità d’esso tirata circuale forma síra. Similmente quadrata ed angolata disegnazione síra. Adunque è da considerare, come el corpo ha tutte le partizioni e membri con perfetta misura e conferienze, el medesimo in nelle città e altri diffisi osservar si debba.

FRANCESCO DI GIORGIO, Trattati, Bd.1, S.20.

54 E quando in essa città rocca da far non fusse, il luogo d’essa alla cattedral chiesa s’attribuischi, col-la sua antiposta piazza dove el palazzo signorile abbi corrispondenza. E dall’opposta parte e risonità dell’imbello la principar piazza. Le palme e piei ad altri tempi e piazze da costituir sono. E così come gli occhi, urecchi, naso e bocca, le vene intestina e l’altre interiora e membra che dentro e intorno al-corpo organizzati a la necessità e bisogno d’esso, così in nelle città osservar si debba [...]. Ebd.

II) scheinen den professionell mit praktischer Geometrie vertrauten Ingenieur und Architekten nicht besonders interessiert zu haben.56

In den späteren und theoretisch durchdachteren Versionen seiner Trattati kehrt Francesco di Giorgio bezeichnenderweise zu dem im Quattrocento gebräuchlichen Kanon der mittelalterlichen Werkstätten zurück. Er bemerkt lapidar, daß es verschiedene Meinungen über die Proportionierung des menschlichen Körpers gebe, um dann zwei Versionen des bekannten Werkstattkanons zu beschreiben.58 Weder Vitruvs Proportionen noch seine Angaben zum homo ad quadratum und zum homo ad circulum werden in einer Weise erläutert, die mit ihrer unmittelbar anthropomorphen Auslegung in den früheren Traktatversionen vergleichbar wäre. Lediglich die metaphorische Auffassung, daß der Nabel das Zentrum der Stadt sei, erinnert entfernt an Vitruvs Mann im Kreis und dessen Interpretation in den älteren Trattati.59 Die Begründung für diesen Umstand ist einfach; durch seine umfangreichen Tätigkeiten als Ingenieur und Architekt, vor allem aber durch seine verbesserten Bildungsmöglichkeiten am Urbiner Hof erreichte Francesco di Giorgio in seinen späteren Trattati ein gegenüber früher ungleich höheres theoretisches Niveau, das auch auf neuen Ideen und Gedanken basierte. Denn nicht mehr die unmittelbare Veranschaulichung der künstlerischen Naturnachahmung durch den architektonischen Anthropomorphismus ist nun der Kern von Francescos Kunsttheorie, sondern die Auffassung, daß der Mensch als vergängliches, doch nichtsdestoweniger erkenntnisfähigtes und erkenntnissuchendes Subjekt seine Tätigkeiten rational bestimmt.60 Vitruvs Proportionsfigur hatte ihre Funktion verloren: Francesco die Giorgio, ähnlich wie nach ihm Albrecht Dürer,

57 FRANCESCO DI GIORGIO, Trattati, Bd.1, S.68-69.
58 Ebd., Bd.2, S.402-403.
59 Ebd., S.363.
60 Vgl. Francesco in den Einleitungen seiner Trattati, ebd., S.324, 360-361, 369-370, und S.413-416; vgl. dazu die Darstellung bei LOWIC, Human Analogy in Francesco di Giorgio. Das exakte Verhältnis Francescos zu seinen Quellen wäre allerdings noch genauer zu erforschen; so scheint er sich in den Trattati, S.369-370, auf ARISTOTELES, De anima 2, auf CICERO, Tusculane disputations 1.26-35, und allgemein auf PLATON, Timaeus, zu beziehen; die genauen Bezugspunkte sind jedoch kaum verifizierbar und legen die Vermutung nahe, daß Francesco entweder eine Kompilation verschiedener Quellen benutzte oder nicht immer genau belegte Hinweise aus gelehrtem Munde vernahm.
benötigte kein antikes Etikett mehr für den traditionellen Anthropomorphismus.

5. Ikonologische Versuche

V. LEONARDO DA VINCI

Nicht zuletzt aufgrund der Tatsache, daß Leonardo da Vincis Darstellung der Vitruvischen Proportionsfigur (Venedig, Accademia; Abb. 1) ebenso berühmt ist wie ihr Autor selbst, wurde seine Zeichnung dieser Figur zum Anlaß zahlreicher und oft wiederholter Interpretationen.1 Die wichtigsten Deutungen dieser Art beziehen sich auf kosmologische und architekturenhistorische Anschauungen, die Leonardo seiner Darstellung des homo ad quadratum und homo ad circulum zugrundegelegt habe oder die ihr zugrundezulegen seien.2 Da Leonardo um 1490, als die Venedig-Zeichnung entstand, zumindest theoretisch auch als Architekt tätig war, ist angenommen worden, daß diese Zeichnung eine Beziehung zu den Zentralbauskizzen hat, die neben zahllosen anderen Studien in oft denselben Manuskriptblättern auftauchen wie die Proportions- und Anatomiezeichnungen selbst.3 Demgegenüber findet sich in Leonardos schriftlichem Nachlaß kein ausdrücklicher Hinweis auf eine Architekturauffassung, die in Form der venezianischen Zeichnung ausgedruckt worden wäre. Es wird daher Gegenstand des folgenden Kapitels sein, Leonardos Studie der Vitruvischen Proportionsfigur in ihren ursprünglichen Zusammenhang zu stellen.

1 Leonardos Zeichnung

Leonardos Zeichnung in der Venezianischen Akademie (343 x 245 mm, Feder mit brauner Tinte, Silberstift und etwas brauner Wasserfarbe am Kopf und an den Händen) ist im Jahre 1490 entstanden. Mit Leonardos Tod gelangte sie 1519 in den Besitz seines Schülers, Francesco Melzi, der sie 1523 bei seiner Abliefe aus Frankreich mit nach Mailand nahm. Da die Studie zu Vitruvs Proportionsfigur im 18. Jahrhundert in Mailand, dem letzten Aufenthaltsort Melzis, wiederentdeckt wurde, kann man annehmen, daß sie sich auch in den vorangegangenen Jahrhunderten dort befunden hat. Sie wurde zuerst 1784 und dann, mit einer korrekten Wiedergabe ihres Textes, erneut 1810 publiziert und fand schließlich 1815 ihren endgültigen Aufbewahrungsort in der Akademie zu Venedig.4

3 Zu Leonardos Architekturverständnis vgl. RICHTER, Literary Works, Bd.2, S.19-82 (etwa Par.1347a, d.i. Cod.Atl. fol.270v); PEDRETTI, Commentary, Bd.2, S.23-86, und PEDRETTI, Leonardo architetto.
4 Vgl. PEDRETTI, Commentary, Bd.2, S.244-245, mit Literaturangaben.
Die Zeichnung demonstriert, wie beide von Vitruv beschriebenen Figuren, sowohl der *homo ad quadratum* als auch der *homo ad circulum*, in einer Illustration vereinigt werden können. Im Falle des *homo ad circulum* wird der Nabel als Mittelpunkt des Körpers angenommen, nicht aber am Beispiel des *homo ad quadratum*, wo jener oberhalb der Scham sitzt. Dadurch ergibt sich ein Verhältnis der beiden geometrischen Figuren, Kreis und Quadrat, das nicht dem Schema der traditionellen mittelalterlichen Quadratur entspricht; aufgrund der Größenverhältnisse läßt sich nämlich das Quadrat ebensowenig in den Kreis einschreiben wie umgekehrt der Kreis in das Quadrat. Offenbar legte Leonardo in seiner Zeichnung keinen Wert auf die architekturtheoretische Bedeutung der Quadratur - im Gegensatz zu späteren Lösungen wie der Cesare Cesarianos von 1521. Die den *homo ad quadratum* und den *homo ad circulum* vereinigende achtgliedrige Figur ist durch einen ausgeprägten Kontur charakterisiert. Dem dadurch vermittelten un plastischen Eindruck wirkt allerdings die rundumlaufende waagerechte Schraffur entgegen. Dieser Widerspruch erklärt sich aus dem Gesamtcharakter der Studie; denn es soll, wie durch die an entsprechenden Gelenken eingezeichneten Meßstriche klar wird, die Meßbarkeit des ganzen Körpers und seiner einzelnen Proportionen demonstriert werden, und da es sich durchweg, wie der Text belegt, um Frontalmaße handelt, konnte Leonardo die Tiefendimension vernachlässigen (sie würde nämlich eine akkurate Messung verhindern). Andererseits soll der menschliche Körper, der die Proportionen enthält, demonstrativ hervorgehoben werden - was in effektiver und einfacher Weise durch die Schraffur geschieht. Neben den Meßstrichen an den Knie-, Hand-, Ellenbogen- und Schultergelenken befinden sich weitere Eintragungen am Haaransatz, an den Augenbrauen, unterhalb der Nasenspitze, an der Scham, am Schlüsselbein und auf der Linie der Brustwarzen. Um das Fußmaß kenntlich zu machen, ist der linke Fuß des *homo ad quadratum* seiner Länge nach dem Betrachter zugekehrt. Überhaupt beschränkt sich die Nachmeßbarkeit der Zeichnung auf den *homo ad quadratum*, wohingegen die Meßstriche im *homo ad circulum* gänzlich fehlen. Eine Skala unterhalb der Grundlinie des Quadrats enthält Maßeinheiten wie 1/4, 1/6, 1/8 usw., die tatsächlich in der Zeichnung und auch im begleitenden Text auf demselben Blatt wiederzufinden sind:

Menschen; die ganze Hand sei der zehnte Teil des Menschen; das männliche Glied beginnt in der Mitte des Menschen; der Fuß sei der siebte Teil des Menschen; von unterhalb des Fußes bis unter das Knie sei der vierte Teil des Menschen; von unterhalb des Knies bis zum Ursprung des Gliedes sei der vierte Teil des Menschen. Die Teile, die sich zwischen dem Kinn, der Nase, den Augenbrauen und den Haarwurzeln befinden - ein jedes dieser Teile ist für sich ähnlich der [Länge] des Ohres und ein Drittel des Gesichts.\(^5\)

Eine ganze Reihe der Proportionen, sowohl der Zeichnung als auch des Textes - so etwa die des Kopfes, des Gesichts, der Hand, oder der Elle (cubito) - stimmen mit den Angaben Vitruvs überein; diese hatte Leonardo spätestens seit 1487 in seine Proportionssstudien aufgenommen.\(^6\) Er geht aber noch weiter, indem er das bei Vitruv nicht unmissverständlich erläuterte Proportionssystem aufgreift und klarer darstellt. Vitruv hatte die Länge des erwachsenen und wohlproportionierten Mannes mit vier Ellen (cubiti; Vitruv 3.1.2.) und später, bei der Diskussion des Maß- und Münzsystems, die anthropomorphe Herleitung der Fingerbreite, der Handbreite, des Fußmaßes und der Elle (digitus, palmus, pes, cubitus; 3.1.5.) beschrieben. Daran anschließend führt er weiter aus, daß die Elle sechs Handbreiten (palmi) oder 24 Fingerbreiten (digitii) entspreche (3.1.7.), der Fuß aber vier Handbreiten (3.1.8.). Aufgeschlüsselt nach seinen einzelnen Werten lautet dieses System: Die Höhe des Menschen beträgt 4 Ellen oder 6 Fuß oder 24 Handbreiten oder 96 Fingerbreiten. Dazu kommen die Maße für die Länge von Kopf und Gesicht, 1/8 und 1/10, die sich problemlos in die obige Reihe von Brüchen mit geradem Nenner eingliedern lassen (Vgl. Kap. II). Indem Leonardo dieses System prinzipiell übernimmt (etwa 1/10 für das Gesicht, 1/8 für den Kopf und die Vierteilung der Körperlänge), ist auch verständlich, wie die Skala unterhalb der Grundlinie des Quadrats, beschriftet mit palmi dii, zustande kommt; ihre einzelnen Markierungen müßten in Relation zur dazugehörigen Proportionsfigur beschriftet werden mit: 1/96 (d.i.

\(^5\) Vitruvius architecto mette nella sua opera d'architettura, che le misure dell'omo sono dalla natura distribuite in questo modo cioè che 4 diti fa[nno] uno palmo e 4 palmi fa[nno] uno piè, 6 palmi fa[nno] un cubito 4 cubiti fa[nno] uno uomo e 4 cubiti fa[nno] uno passo e 24 palmi fa[nno] uno uomo e queste misure son ne' suoi editti; Se tu apri ta[n]to le ga[m]be che tu cali da capo 1/4 di tua altezza e apri e alzi tanto le braccia che colle lunghe dita tu tochi la linia della som[m]ità del capo, sappi che 'l cie[n]tro delle stremità delle aperte me[m]bra fia il bellico e lo spatio che si trova intre le ga[m]be, fia tri[n]golo equilatiero. Tanto apre l'omo nelle braccia qua[n]to è la sua altezza. Da nascimente de' capelli al fine di sotto del mento è il decimo dell' altezza del uomo; dal di sotto del mento alla som[m]ità del capo è l'octaua dell' altezza dell'omo: dal di sopra del petto alla som[m]ità del capo fia il sexto dell'omo; dal di sopra del petto al nascime[n]to de' capelli fia la settima parte di tutto l'omo; dalle tete al di sopra del capo fia la quarta parte dell'omo: la maggiore larghezza delle spalle contiene in sé la quarta parte dell'omo, dal gomito alla punta della mano fia la quarta parte dell'omo: da esso gomito al termine della spalla fia la octaua parte d' esso omo: tutta la mano fia la decima parte dell'omo: il membro virile nascie nel mezzo dell'omo; il piè fia la settima parte dell'omo; dal di sotto del piè al di sotto del ginocchio fia la quarta parte dell'omo; dal di sotto del ginocchio al nascime[n]to del membro fia la quarta parte dell'omo; le parti che si trovano intre il me[m]e e il nasso e 'l nascime[n]to de' capelli e quel de' cigli ciascuno spatio per sé è simile all' orecchio ed è 'l terzo del volto.

\(^6\) Etwa auf einem zwischen 1487 und 1490 zu datierenden Blatt des Codex Atlanticus, fol.358° (RICHTER, Literary Works, Bd.1, Par.340), wo die Gesichts-, Kopf- und Brustmaße mit 1/10, 1/8 und 1/4 angegeben sind. Vitruvs Ratio von 1/6 für die Entfernung von der Brust bis zum Haaransatz findet sich in der vor 1490 entstandenen Zeichnung W.19130° ([257]; RICHTER, Bd.1, Par. 334). Zur Frage der Datierungen vgl. PEDRETTI, Commentary.

der jeweilige Abstand zwischen den 5 kleinen Strichen an den beiden Enden der Skala), 1/24, 1/12, 1/8, 1/6, 5/24 und 1/4. Davon tauchen die Bruchteile 1/4, 1/6, 1/8 und, jedoch nicht mehr exakt nachprüfbar, 1/24 (Handbreite) und 1/96 (Fingerbreite) in der Zeichnung auf. Sogar der Wert 1/12 findet sich wieder, nämlich zwischen der Höhe der Brustwarzen und derjenigen des Schlüsselbeins. Dieses Maß läßt sich sowohl mithilfe der Meßstriche verifizieren, als auch durch eine simple arithmetische Operation ermitteln. Der besagte Abstand ergibt sich, wenn man die Strecke von der Höhe des genannten Schlüsselbeins bis zum Scheitel von der Distanz zwischen dem Scheitel und der Linie der Brustwarzen subtrahiert (1/4-1/6 = 1/12). Der Wert 5/24 allerdings, der aufgrund einer in Vierundzwanzigstel eingeteilten Skala nicht zu vermeiden war, konnte nirgendwo untergebracht werden.

2. Leonardo und Vitruv

Vitruv hatte sich in seinen Angaben zur Proportionslehre des griechischen Maßsystems bedient; d.h. er nimmt den Klafter mit 6 Fuß oder 4 Ellen (cubiti) an, wohingegen das römische System für seine Länge 5 Fuß vorgesehen hatte.8 Leonardo nun, dem das in Italien noch bis in das 19. Jahrhundert gebrauchte römische Maßsystem geläufig gewesen sein mußte, scheint das nicht als einen Widerspruch empfunden zu haben. Er behält einfach Vitruvs Reihe von Brüchen mit geradem Nenner bei, setzt den Klafter (ital. passo) gleich vier Ellen (cubiti) und vermeidet so eine Collision mit dem römisch-italienischen Wert, der mit einer Ratio von 1/5 nicht in das auf geradem Nenner basierende Konzept gepaßt hätte. Bemerkenswert an dieser Vorgehensweise ist allerdings nicht nur, wie Leonardo eines der seinerzeit gültigen metrologischen Systeme suspendiert, sondern auch daß er Vitruvs Metaphorik des homo ad quadratum als Ausdruck des seinerzeit noch aktuellen Klafters versteht.9 Da weder vom Kreis noch vom Quadrat die Rede ist, scheint Leonardo in seiner Auseinandersetzung mit Vitruv grundsätzlich die Bedeutung geometrischer Figuren weniger wichtig gewesen zu sein als die Genauigkeit der menschlichen Proportionen und ihrer Beziehung zur Metrologie.

Schwieriger als das Auftauchen eines griechischen Maßsystems, das nicht vollständig mit dem italienisch-römischen harmonierte, waren einige Angaben Vitruvs, deren Widersprüchlichkeit bei einer tiefergreifenden Auseinandersetzung nicht umgangen werden konnte. So paßte die Fußlänge von 1/6 der Körperhöhe zwar in die Reihe der Brüche mit geradem Nenner, doch war der Fuß damit aus rein ästhetischen Gründen, die in einem rein metrologischen System wenig Gewicht haben, einfach zu groß. Daher behält Leonardo in seinem Text, wo er Vitruvs anthropomorphes Maßsystem von Fingerbreite, Handbreite, Fuß und Elle entwickelt, jenen Wert zunächst bei, wechselt dann aber weiter unten, wenn es um Proportionen im engeren, also nicht mehr metrologischen Sinne geht, zu 1/7 über. Diese ästhetisch

8 Vgl. HULTSCH, Metrologie; LORENZEN, Studies in Metrology (zit. Kap. II.1).
befriedigendere Länge ist auch in der Zeichnung selbst eingetragen, denn spätestens dort wäre Vitruvs überdimensionierte Fußlänge unangenehm aufgefallen. Ausgehend vom Text Vitruvs, der eine Proportionslehre auf der Basis der Metrologie enthält, nimmt Leonardo diesen metrologischen Ansatz auf, um dann seinerseits eine reine prozentualtheoretische Auffassung zu formulieren. In der Entwicklung von einer metrologisch fundierten zu einer ästhetisch orientierten Proportionslehre wurde also die Ratio 1/6 wegen ihrer übergroßen und daher unschönen Dimension aufgegeben. Da diese Ratio von einem Siebenteil der Körperhöhe an keiner anderen Stelle in den Proportionssstudien Leonards aufftaucht, ist möglicherweise eine externe Quelle für ihr Auftauchen verantwortlich. So könnte Leonardo von der Bemerkung des Aulus Gellius, daß der Fuß eines wohlgestalteten Mannes 1/7 seiner Körperhöhe nicht übersteige, angeregt worden sein. Gegen die einfacher Erklärung, daß er den nach 1/6 kleineren Wert 1/7 genommen habe, spricht das gänzliche Fehlen dieser Ratio in den sonstigen Proportionssstudien Leonards.

Eben diese Verbesserung, die heute in jeder Vitruvedition auftaucht, hat auch Leonardo vorgenommen, doch weitaus präziser und in arithmetischer

11 GELLIIUS, Noctes atticae 3.10. Eine erst später, auf 1499/1500 zu datierende Bemerkung läbt den Schluß zu, daß Leonardo Gellius (ed. princ. 1469) gekannt hat; vgl. RICHTER, Literary Works, Bd.2, Par. 1152.
16 CESARE CESARIANO, Di Lucio Vitruvio Pollione de architettura libri X, Como 1521, fol.48v.

3. Leonardo’s Proportionssstudien

Leonardo kam um 1483 an den Mailänder Hof; neben seiner Hauptbeschäftigung, den Arbeiten für das Sforzamonument, war er in geringerem Umfange als Maler, als Ausstatter von Hoffesten und als Architekt tätig. Seit 1487 sind erste Anatomiestudien nachweisbar17, doch die Beschäftigung mit den Proportionen des menschlichen Körpers erstreckte sich

LEONARDO DA VINCI
83

bis auf eine länger zurückreichende Periode, denn aus den Jahren 1483 bis 1495 ist bereits eine große Anzahl von Proportionzeichnungen überliefert; dazu kommen schriftliche Notizen, die vor allem die Proportionsstudien erläutern. Diese Notizen, die in einigen Fällen selbständig und unillustriert sind, lassen auf ein um 1490 geplantes Projekt schließen, das alle Aspekte des menschlichen Körpers umfassen sollte. So schreibt er: *a di 2. d'aprile 1489 libro titolato di figura vmana.*\(^{18}\) An anderer Stelle, um 1489, führt er die Struktur dieses Buches näher aus. Sein erster Teil befasse sich mit dem Wachsen des Kindes im Mutterleib, der zweite mit der Figur des erwachsenen Mannes und der erwachsenen Frau und der vierte schließlich mit den Venen, Muskeln, Knochen etc. Darauf folge eine Darstellung der vier generellen Zustände des Menschen (Freude, Weinen, Streit, Arbeit) sowie seiner Bewegungen, Haltungen und fünf Sinne.\(^{19}\)

Obwohl Luca Pacioli 1498 in der Dedikation seiner Abhandlung *De divina proportione* von einem vollendeten Malereitaktat und einem fertiggestellten Buch über die Bewegungen des menschlichen Körpers spricht, ist kaum anzunehmen, daß Leonardo sein umfangreiches Projekt jemals fertiggestellt hat.\(^{20}\) Denn abgesehen von den spärlichen Resten des Buches über Bewegung im Codex Huygens\(^{21}\) wissen wir wenig über diese Abhandlung, und das uns heute vorliegende Malereitaktat ist eine Kompilation Melzi, die teilweise Material aus dem Zeitraum zwischen 1510 und 1515 enthält. Eine Ahnung davon, wie sich das geplante Projekt weiterentwickelte, gibt eine kurze Bemerkung aus dem Malereitaktat, die zwischen 1490 und 1495 zu datieren ist.\(^{22}\) Dort endet eine Erörterung über das Aufwachsen und über die Proportionen von Kindern mit dem Hinweis: »Und über den Rest wird man sich in den allgemeinen Maßen des Menschen äußern.«\(^{23}\) Ein um 1493 zu datierendes Blatt in Windsor enthält die Bemerkung: »Wenn du das Wachsen des Menschen beendet hast, dann wirst du die Statur mit allen ihren Oberflächenmaßen machen.«\(^{24}\)

Da beide Bemerkungen dem oben skizzierten Projekt entsprechen, kann man folgern, daß Leonardo tatsächlich an ihm arbeitete und daß er diese Arbeit um 1493 keineswegs beendet hatte. Weiterhin enthält der dritte Teil des von Melzi zusammengestellten *Trattato di pittura* eine ganze Reihe von Bemerkungen,

\(^{18}\) Vgl. RICHTER, Literary Works, Par. 1370, Bd.2, S.343; die Bemerkung »libro di figura vmana« wurde etwa 20 Jahre später von Leonardo hinzugefügt; vgl. PEDRETTI, Commentary, Bd.2, S.314-315.

\(^{19}\) Vgl. RICHTER, Literary Works, Par. 797, Bd.2, S.86 (d.i. W.19037v [81v]), Zeile 1 bis 20 (die dann folgenden Zeilen waren später hinzugefügt).

\(^{24}\) Qua[n]do tu ài finito di crescre l’omo tu farai la statua co[n] tutte sue misure superfittiali. Zit. nach RICHTER, Literary Works, Par. 802, Bd.2, S.89 (d.i. W.19097v [35v]).
deren originale Vorlagen zwischen 1490 und 1495 zu datieren sind und deren Inhalt genau mit Teilen jenes Projektes übereinstimmt, das Leonardo 1489 formuliert hatte. So finden sich etwa Hinweise auf die Proportionen von Kindern sowie auch Bemerkungen über die Darstellung von Bewegung und Ausdruck.25

Bereits eine der frühesten erhaltenen Proportionssstudien in Windsor (W.19140f [23f]), zwischen 1487 und 1490 zu datieren, zeigt das gestreckte Bein eines Mannes mit den aus der Venedig-Zeichnung bekannten Meßstrichen und Proportionen. Dem begleitenden Text ist allerdings zu entnehmen, daß die Skizze hauptsächlich der Demonstration von Breitenmaßen diente. Eben dieses Anliegen ist auch in einer anderen Zeichnung in Windsor formuliert (W.19134-19135f [30f]), die zu einer Gruppe von Studien gehört, deren Ergebnisse auf der Vermessung zweier Modelle, Trezzo und Caravaggio, beruhen. Auch hier liegt das Hauptgewicht auf der Darstellung von Breitendimensionen, doch ([30f] Fig.13) finden sich erneut jene aus der Venedig-Zeichnung vertrauten Meßstriche. Ebenso weisen weitere Studien, alle 1490 oder kurz davor und größtenteils auf der Grundlage empirischer Anthropometrie entstanden (W.19136-19139f [31f]), auf eine Systematik hin, deren sich Leonardo bei seinen Vermessungen bediente. Dabei stimmen die Proportionen in den Zeichnungen bisweilen mit denen in Venedig überein (W.19140f [23f]; W.19136-19139f [31f]), und auch im begleitenden Text tauchen bekannte Proportionen wieder auf (W.19134-19135f [30f], Nr.XX).

25 Vgl. Leonardo, Buch der Malerei, Nr. 263ff., Bd.1, S.289ff.

26 piglia adonque le misure delle gionture, e le grossezze, in che forte uraria [natura], urariale anchora tu. (dt.: Nimm also die [Längen-] Maasse der Gelenke [als feststehend an], und die Breiten, in denen in der Natur große Variation herrscht, variert auch du.) Übersetzung und Text nach Leonardo, Buch der Malerei, Nr.270, Bd.1, S.284 (d.i. Cod. Urb., fol. 104). Die Datierung nach PEDRETTI, Libro A, S.189, wo diese Bemerkung dem verlorenen Libro A, Nr.36, zugeschrieben wird.
4. Die Proportionsstudien und die Zeichnung in Venedig

27 Vgl. KEELE/PEDRETTI, Corpus, Bd.2, S.815.
Körperhöhe lang wie die daneben eingetragenen Breiten- und Längenproportionen des Rumpfes. Problematischer geht es auf den anderen Blättern zu; W.19130r [25r] offenbart Leonardos Unsicherheit gegenüber Vitruvs zweifelhafter (s.o.) Angabe, daß der Abstand von der Brusthöhe bis zum Haaransatz 1/6 sei. Sein diesbetreffender Satz bricht nämlich unvermutet ab: Von den Haarwurzeln bis zur Höhe der Brust a b sei der sechste Teil der Höhe des Menschen und dieses Maß sei ähnlich ... 29 Da Leonardo schließlich zu der Lösung kam, die Ratio von 1/7 einzusetzen, dürfte diese Zeichnung der endgültigen Erledigung des bei Vitruv gegebenen und oben erörterten Problems direkt vorausgegangen sein.

Das fragwürdige Maß von 1/6 taucht auch in W.19131v [26v] auf, allerdings nur mittelbar. In der oberen Darstellung eines ausgestreckten Armes wird der gesamte Arm durch das Ellenbogengelenk in zwei gleiche Teile geteilt. Unter Zuhilfenahme einer Zeichnung im Codex Huygens (fol.61r), die ein hiermit in Verbindung stehendes und heute verlorenes Original wiedergibt30, kann man schließen, daß hier der toskanische *braccio*, bestehend aus 2 Fuß, dargestellt ist. Gemäß dem toskanischen metrologischen System (nicht zu verwechseln mit alten römischen Systemen, die an anderen Orten noch gültig sein konnten; s.o.) ist der *braccio* 1/3 end somit der Fuß 1/6 der Körperhöhe.31 Wie oben erläutert wurde, wandte sich Leonardo in der venezianischen Zeichnung vom überdimensionierten Fuß ab und einer anderen Lösung zu, einer Lösung, die sich bereits auf demselben Blatt anbahnt. Der Ellenbogen als Mitte wird zwar beibehalten (so zumindest suggeriert es irreführenderweise der begleitende Text), doch in der darunterliegenden Skizze geht Leonardo über das Maß des *braccio* hinaus und erhält so zweimal die Ratio von 1/4, was zusammen einem halben Klafter entspricht. Dabei seien es, wie auch in der venezianischen Zeichnung, sowohl von der Handspitze bis zum Ellenbogengelenk als auch von dort bis zur Brustmitte 1/4 der Körperhöhe (diese Angabe wird wörtlich noch einmal in dem erwähnten Blatt des Codex Huygens ausgeführt). Leonardo wechselt also vom *braccio* des toskanischen Maßsystems zum vier *cubiti* enthaltenden Klafter über, was erneut belegt, welchen Stellenwert dieses alte Längenmaß in Leonaridos Rezeption der Vitruvischen Proportionsfigur hatte.

29 dalle radici dechapegli alla somja delpetto a b fia lasesta parte dellaaltezza dellomo e questa misura sia simile ... zit. nach KEEL/PEDRETTI, Corpus, Bd.1, S.44.
31 KEEL/PEDRETTI, Corpus, Bd.1, S.46.
Zu beantworten bleibt die Frage, wie und warum Leonardo zu seiner Studie der Vitruvischen Proportionsfigur gekommen ist und welche Absicht er mit ihrer ungemäßen präzisen Ausführung verband. Hier könnte die letzte der Vorzeichnungen (die ebensogut auch die erste sein könnte) weiterhelfen (W.19132f [27f]), die einen (allerdings nicht sonderlich korrekten) homo ad quadratum darstellt und damit der Zeichnung in Venedig am nächsten steht. Andererseits widmet sie sich, wie man dem begleitenden Text entnehmen kann, einem gänzlich anderen Problem, nämlich dem der sich bei bestimmten Bewegungen verändernden Proportionen (genauer, denen der sitzenden und knienden Figur). Außerdem ist dieser homo ad quadratum einer etwas ungenauen Einteilung in Achtelteile unterworfen, einem System also, das noch weit von der endgültigen Lösung in Venedig entfernt ist. Daraus lassen sich grundsätzlich zwei Schlüsse ziehen:

1.) Da es bis dahin in den Künstlerwerkstätten üblich war, den Kopf als Modul eines Proportionssystems zu nehmen, erschien Leonardo zunächst, Vitruvs Kanon aufgrund dieser ihm nächstliegenden Maßeinheit zu verifizieren. Er erkannte aber, daß dieses Vorgehen zu keinen brauchbaren Ergebnissen führte, sondern zu Meerpunkten am Körper, die seinen anthropometrischen Erfahrungen widersprachen. Daher wandte er sich in einem dann folgenden Stadium, das durch die anderen Vorzeichnungen veranschaulicht wird, der oben skizzierten Vorgehensweise zu.

2.) Obschon Leonardo den Vitruvischen Proportionen ein großes Interesse entgegenbrachte, beanspruchte die Auseinandersetzung mit ihnen keineswegs seine gesamte Aufmerksamkeit. Im Gegenteil, er widmete sich noch anderen Problemen, die sich aus dem von ihm projektierten Buch über den menschlichen Körper ergaben - z. B. den Proportionen einer sich bewegenden Figur.

Besonders in den Jahren nach 1513 stellten Dürers Proportionsstudien eine nur sehr begrenzte Ausseinandersetzung mit Vitruv dar, und die beiden um 1507/1508 entstandenen Blätter, auf denen Dürer den homo ad quadratum und den homo ad circulum flüchtig skizzierte, bildeten keinen Bestandteil seiner später publizierten Proportionslehre. Es wird daher der Gegenstand des folgenden Kapitels sein, die allgemeine Bedeutung jener Skizzen im frühen theoretischen Schaffen Dürers sowie in ihrem Verhältnis zur Antiken- und

1. Erste Proportionssstudien

Den Proportionssstudien Albrecht Dürers gehen zwei Versuche voraus, die menschliche Figur darzustellen und zu gestalten, nämlich zum einen - vermittelt durch die Kunst der italienischen Renaissance - die Auseinandersetzung mit den Bildwerken der klassischen Antike und zum anderen die eigenen Naturstudien. Letztere halten sich in engen Grenzen; vor 1500, dem Beginn der eigentlichen Proportionssstudien, können nur wenige Blätter als Zeichnungen nach der Natur gelten, so zum Beispiel ein als »Badefrau« bekannter weiblicher Akt (W.28)

5 Das vermutlich nach Leonardo komponierte Exemplar findet sich bei PEDRETTI, Commentary, Bd.1, S.68-72, und Taf.10 (zit. in Kap. V).

7 Vor 1500 wahrscheinlich W.33 (datiert 1493), W.83 (ca.1495), W.85 (14957), W.88 (ca. 1496 oder 1510?) und W.152 (datiert 1496); die Bezifferung »W« erfolgt nach WINKLER, Zeichnungen Dürers.

Die genuinen italienischen Vorbilder der antikisierenden Zeichnungen Düers sind nicht immer bekannt; die einzelnen Zuweisungen stützen sich daher teilweise auf stilistische Übereinstimmungen und auf Kopien anonymer Künstler nach Originalen Andrea Mantegnas, Antonio Pollaiuolo und Jacopo de' Barbaris, die wiederum identifizierbare oder nicht identifizierbare antike

11 Vgl. MEDER, Handzeichnung, S.392.

Dürers Entwicklungsstand vor seiner Auseinandersetzung mit Vitruv und vor dem Beginn seiner eigentlichen Proportionsstudien basierte also auf wenigen Zeichnungen nach lebenden Modellen und auf der Kenntnis der durch die italienischen Künstler vermittelten Antike. Neue Anstöße muß er um 1500 von Jacopo de' Barbari erhalten haben,21 der ihm, wie Dürer 1523 berichtet, zwei mit Maß gemachte Zeichnungen, einen Mann und eine Frau, gezeigt hatte und überhaupt der einzige verfügbare Sachverständige auf diesem Gebiet gewesen sei:

Ich doch so ich keinen find, der do etwas beschreiben hett von menschlicher mas zw machen, dan einen man Jacobus genent, van Venedig geporn, ein lieblicher moler. Der wie mir man vnd weib, dä er aws der mas gemacht hett [...]. Aber ich was zw der selben zeit noch jung vnd het nie fan solchdem ding gehört. Vnd dä kunst ward mir fast lieben [d.i. sehr lieben], vnd [ich] nam dä ding zw sin, wä man solche ding möcht zw wegen pringen. Dan mir wolte diser forgemelt Jacobus seinen grunt nit klerlich an zeigen, das merkelt ich woll an jm. Doch nun ich mein eygen ding fü mych vnd las den Sitruflium, der beschreibt ein wenig van der glidmas eines mans. Also van oder aws den zweien obgenanten manen [Jacopo de' Barbari und Vitruv] hab ich meinen anfang genumen, vnd hab domnoch aws meinem für nemen gesucht von dag zw dag.22

20 Vgl. F. WICKHOFF, Dürers Studium nach der Antike, Innsbruck 1880 (Separatum der Mitteilungen des Instituts für österreichische Geschichtsforschung 1.1880, H.3).
22 RUPPRICH, Schriftlicher Nachlaß, Bd.1, S.102.

Die Bedeutung von »grunt« und »mas« für den als Goldschmied und damit handwerklich ausgebildeten Dürer ergibt sich aus dem Sprachgebrauch der Steinmetzen. Mathes Roriczer etwa schreibt in der Widmung seines zuerst 1486 erschienenen Fialenbüchleins:

So doch ein yede kunst materien form vnd masse Hab ich mit der hilff gotes ettwas berurtet kunst der geometrye zuerleuten Und am ersten dasmale den anfang des auszgezogens stainwersch wie vnd in welcher mass das aus dem grunde der geometrye mit austedung des zirkels herfarkomen vnd in die rechten masse gebracht werden solle [...].

Daß der »grund« neben einer praktischen Bedeutung im Sinne der konkreten Zeichengrundlage auch eine abstrakte Konnotation haben konnte, die ein allgemeines Prinzip des zeichnerischen Entwurfs bezeichnete, belegt das etwas

23 Vgl. L. SERVOLINI, Jacopo de' Barbari, Padua 1944, Taf. Nr. 6-12 und Nr.57, 64, 69, 73-81.
24 Zitiert nach L. R. SHELBY, Gothic Design Techniques. The Fifteenth-Century Design Booklets of Mathes Roriczer and Hanns Schmuttermayer, Carbondale (Ill.) 1977, S.82 (d.i. fol.27).
später (um 1487/1488) gedruckte Fialenbüchlein Hanns Schmuttermayers. Er schreibt in der Widmung seines Werkes von den geachteten Vorgängern und von der Baukunst allgemein, die »auß der wache, winckelmoß, triangl, zirkel, vnd linial vsprunglichen iren waren grunt haben.«26 Eine noch allgemeinere Bedeutung des Begriffs »grund« im Sinne einer erlernbaren Grundlage für praktische Geometrie und Zeichenkunst formuliert Erhard Schön: »Item am annfang du[er]t not so mon die Jungenn will lernenn das sihe wiessen den Rechten grundt [...]«.27

Item es ist bequem [d.h. passend], ein jülichem ein menschliche gestalt zum ersten leren aws teillen vnd in ein mas pringen, e man etwass anderst lerne.31

26 Zitiert nach SHELBY, Gothic Design Techniques, S.126, mit geändelter Interpunktion.
27 ERHARD SCHÖN, Unnderweisung der proportzion und stellung der possen, Nürnberg 1542, c.Aji; vgl. auch WALTER RYFF, Vitruvius Teutsch, Nürnberg 1548 (siehe Kap. VIII, Anm. 36).
30 Vgl. GRIMM, Deutsches Wörterbuch, Bd.6, Sp.1721-1737.
31 RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.99.
2. Dürers konstruierte Figuren

Dürers konstruierte Figuren entstanden vor allem zwischen 1500 und 1504 sowie um 1512/1513. Sie basieren auf vier verschiedenen Voraussetzungen, nämlich auf Dürers Verständnis von »mas« und »grunt« der Geometrie, auf antiken Figurentypen (Venus, Apollo und Herkules), auf Vitruvs Proportionskanon und auf eigenen Beobachtungen.

Von diesem Zeitpunkt bis zu den Typen B und C der 1528 veröffentlichten Proportionslehre werden die von Vitruv erläuterten Maßangaben immer wieder benutzt, doch haben sie nie eine entscheidende Bedeutung. Schon in der frühen Phase ist zwischen etwa 1503 und 1505, wenn die bisher vorgeschlagenen Datierungen korrekt sind, ein rückwärtiges Interesse an Vitruv erkennbar. Erst zwischen 1506 und 1508 tauchen wieder flüchtige Skizzen und ganze Figuren nach Vitruv auf. Dürer setzte sich also nach seiner zweiten Italienreise wieder intensiver mit Vitruv auseinander und stellte seine vor dieser Reise entstandenen konstruierten Figuren dessen Angaben zur Seite. Die Proportionen aus De architectura konnten, wie die frühen Beispiele zeigen (D.70 und D.91),

35 London 5228, fol.150v, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.40.
36 London 5231, fol.14r, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.41 (Kopflänge).
37 D.70, fol.162v (STRAUSS, Dresden Sketchbook, Nr.5, Vitruvs I/8 und I/10); D.91, fol.155v (STRAUSS, Dresden Sketchbook, Nr.7; Verwendung von Vitruvs I/6 und I/10).
38 London 5231, fol.149v, und fol.141r (RUPPRICH, Schritlicher Nachlaß, Bd.2, S.45).
39 London 5231, fol.142v, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.41.; 5228, fol.164v und 164v (links oben), RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.163.; D.46, fol.119v (STRAUSS, Dresden Sketchbook, Nr.10); London 5231, fol.14v und 2r, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.166., und fol.4r, ebd., S.169.
gelegentlich in die geometrischen Konstruktionen eingebaut werden, doch entsanden dabei Probleme, wenn die numerischen Werte Vitruvs den Ergebnissen der Geometrie widersprachen. Dieses Problem zeigt ein um 1507 entstandenes Blatt des Dresdener Skizzenbüchse (Abb. 11), auf dem Dürer die Vitruvischen Proportionen verzeichnet und gleichzeitig seine Konstruktionsmethode beschreibt, die auf dem Verhältnis verschiedener Kreise zueinander basiert.\(^{40}\)

Setzt ein linij von 8 tellin. Z.w.oberst setz a, und daz der erste 8 teill bleiben zum hawbt. Der gros zirkell sein dy arm, ist ein 4 teill der leng. Vnd jn sein centro stett daz herzt grübel. Daz der klein cýrkel in der diametris eins 4 teills mynder hab den der gros. Vnd sein centrum ist der nabel awff dem vms schweiff des grossen cýrkells. Vnd der kleiner vmschweiff ent den pawch awff der scham. Do setz ein a hin. Nyml den cýrkel, setz jn mit dem ein ort jn den jtz gemelten punct vnd thw jn awff pis jn daz centro ins herzt grübel.

Nym den cýrkel, setz jn mit dem ein ort jn nabell vnd reis oben durch dy grosser czircum ferentz, vnd wo der tsirkell an zweyen orten dy for gemelt czirkum verzent ab schneit, do setz b c. Do heben dy arm an.\(^{41}\)

Dürer muß die Problematik dieser Verbindung von geometrischen Konstruktionen und Vitruvischen Proportionen sofort erkannt haben, denn ein anderes Blatt aus derselben Zeit zeigt sowohl eine Korrektur als auch eine Weiterentwicklung des oben beschriebenen Schemas.\(^{42}\) Hierbei erweitert Dürer den Kanon Vitruvs um eine Vielzahl genauerer Proportionen, doch er stellt die beiden Kreise, deren Durchmesser sich wiederum wie vier zu drei verhalten, nicht mehr in einen proportionalen Zusammenhang mit den Angaben Vitruvs.

\(^{40}\) D.20, fol.105\(^f\) (STRAUSS, Dresden Sketchbook, Nr.8).

\(^{41}\) RUPPRICH, Schriftlicher Nachlaß. Bd.2, S.166.

\(^{42}\) D.52, fol.132\(^f\) (STRAUSS, Dresden Sketchbook, Nr.12).
(1/4 und 1/6). Damit wurden die Vitruvischen Angaben und die geometrischen Konstruktionen zu voneinander unabhängigen Vorgaben.

43 D.70, fol.162v (STRAUSS, Dresden Sketchbook, Nr.5).
44 Vgl. z.B. 5229, fol.92v.
45 Vgl. London 5228, fol.164; 5231, fols.1v-2r und 4r (vgl. RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.163, 166 und 169).
46 Fol.119v, D.46 (STRAUSS, Dresden Sketchbook, Nr.10).
47 London 5228, fol.1 (unpubliziert), und 5229, fol.92v, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.213.
48 Vgl. etwa London 5228, fol.150v, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.40.
früher zu datierenden Beispielen lediglich als Blindrillen, später dann aber ganz mit der Feder durchgezogen sind.49 Dieses System ändert sich im Prinzip bis zur 1528 erschienenen Proportionslehre, in der es beinahe unendlich variiert wird, nicht.

3. Die normative Richtigkeit

Die Entwürfe, in denen sich Dürer seit etwa 1507/1508 wieder verstärkt mit Vitruv auseinandersetzte, sind zunächst ein Versuch, dessen Angaben zu den menschlichen Proportionen im Sinne einer systematischen Maßbestimmung des Körpers zu nutzen. Dabei ging er von den Proportionen 1/10, 1/8, 1/6 und 1/4 aus, die Vitruv für die obere Körperhälfte angegeben hatte50; in einem weiteren Schritt übertrug Dürer sie auf die gesamte Länge eines stehenden Mannes.51 Die vierschneide Unterteilung in Zehntel, Achtel, Sechstel und Viertel wird hierbei mit möglichst vielen Punkten am Körper in Verbindung gebracht, und besonders markante weitere Stellen, die nicht in das vierschneidige Unterteilungssystem passen, bestimmt Dürer durch nicht aus Vitruv stammende Brüche wie 1/5 oder 1/20.52 Gleichzeitig tauchen Reste von geometrischen Konstruktionsversuchen auf, die er schon in vorhergehenden Studien (s.o.) mit dem Kanon Vitruvs in Verbindung zu bringen versucht hatte. Doch insgesamt scheint ihm ein auf den Vitruvischen Proportionen basierendes System zu schematisch gewesen zu sein, denn seine eigene, teilweise aus Vitruv, teilweise aus den geometrischen Konstruktionen entwickelte Unterteilung der Längsachse einer stehenden Figur erlaubte jene größere Flexibilität, die in der später veröffentlichten Proportionslehre die Erschaffung und Variation mehrerer Proportionstypen möglich machen sollte.53

Im Verlauf seines wiedererwachten Interesses für Vitruv unternahm Dürer auch zwei Versuche, den \textit{homo ad quadratum} und den \textit{homo ad circulum} darzustellen. Dürers flüchtige Skizzen dieser beiden Figuren sind zwischen den Jahren 1507 und 1508, also nach der zweiten Italienreise entstanden (Abb. 12 und 13). Sie gehören damit in eine Phase verstärkter kunsttheoretischer Anstrengungen, die in dem Plan gipfelten, ein umfassendes Malereitraktat zu verfassen, an dessen zentraler Stelle auch ein Abschnitt über das Maß des Menschen stehen sollte. Die vermutlich etwas früher entstandene und ohne begleitenden Text vorliegende Zeichnung ist eine flüchtige, in rotbrauner Tinte ausgeführte Skizze, die den \textit{homo ad quadratum} und den \textit{homo ad circulum} in zwei Darstellungen getrennt voneinander zeigt.54 Beide sind zu flüchtig, um als Proportionsstudien im eigentlichen Sinne angesehen werden zu können. Dasselbe gilt auch für die wahrscheinlich kurz darauf entstandene zweite Zeich-

49 Sowohl Blindrillen als auch Federstriche finden sich auf 5229, fol.133v.
50 Vgl. London 5228, fol.164; 5231, fol.4r (die beiden Skizzen links oben).
51 Vgl. London 5231, fols.1v-2r, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.166.
52 Vgl. ebd, Bd.2, S.166-167.
54 London 5228, fol.164r, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.163 und S.165; eine photographische Reproduktion findet sich ebd. auf Taf.12, Nr.37.
nung beider Figuren, die mit einem Text versehen ist. Allerdings wurde hier mit etwas hellerer (oder heute verblaßter) Tinte probeweise eine alternative Armstellung des *homo ad quadratum* eingetragen, so daß das zweite Armpaar (auf Reproduktionen nicht sichtbar) auf der Höhe des Kopfes das umschreibende Quadrat erreicht. Auf beiden Blättern sind die jeweiligen Quadrate freihändig skizziert, doch zumindest im Falle der beschrifteten Zeichnung ist der Kreis um den *homo ad circulum* als Blindrille mithilfe eines Zirkels konstruiert und dann mit der Feder nachgezogen worden.

Wie die Zeichnungen bereits vermuten lassen, handelt es sich hier um eine Demonstration allgemeinerer Art. Die Präsentation der Vitruvischen Proportionsfigur läßt darauf schließen, daß er sich ihrer Darstellung nur bediente, um allgemein in den Abschnitt über die »mas« des Menschen einzuleiten, und auch ihre Ausführung steht in keinem sachlich relevanten Zusammenhang zu den Proportionsstudien selbst. Diese Vermutung bestätigt der Text, der eine teilweise wörtliche Übersetzung des lateinischen Originals aus *De architectura* ist; er sollte als Einleitung für den Abschnitt über die menschlichen Proportionen dienen:

Vnd dorum so will jch, e jch sag vom gepew, ertzelen, wy ein wolgestalter mensch mag sein. Dornoch ein beibspild, ein kind vnd ein ros. Awwf sollich weg magstw pey lewftig al ding messen.

Vnd dorum hor zum ersten, was do spricht Fitrufius von der menschlichen gldmos, dy er gelerrt hat von den grossen meisteren, moler vnd gisser, dy hoch berumt sind gewest.

Es folgt eine Wiedergabe des Vitruvischen Kanons, wobei Dürer die notorisch problematische und allem Anschein nach korrupte Angabe (vgl. Kap. II) ausläßt, daß die Entfernung von der oberen Brust bis zum Scheitel 1/4 der Körperhöhe betrage. Nach der Beschreibung des eigentlichen Kanons geht er zur architektonischen Bedeutung von Kreis und Quadrat über:

Sollich gldmos teilt er alle jn dy gepew vnd spricht: Wen man ein mensch awff dy erd aws grepet mit henden vnd füssen nider legt vnd ein izirkell in den nabel setzt, so rürt der vm schweiff hend vnd fus. Do mit bededtw er zw finden ein runden paw aws der menschlichen gldmas. Vnd zw gliicher weis vüntet man auch ein firung, wen man mist von den füssen pis zw dem höchsten, so ist dy kloffter eben als preit als dy leng. Do mit er weist er dy gefirten pew.

Dürer faßt hier also den Mann im Kreis und im Quadrat als ein unmittelbares Abbild von kreisförmigen und quadratischen Gebäuden auf; diese Auffassung erfährt allerdings keine weitere Ausführung. Dies mag auf sein begrenztes architekturtheoretisches Interesse zurückzuführen sein, vielleicht aber auch auf Vitruvs schwierige Terminologie. Denn bezeichnenderweise läßt Dürer den Passus über die architektonischen und proportionstheoretischen Grundbegriffe *symmetria*, *analogia* und *proportio* insofern unberücksichtigt, als er die Definition dieser drei Termini nicht direkt übersetzt, sondern eher lapidar mit den Worten »verporgne heimlichkeit der mos« umschreibt.

Die wahrscheinlichste Erklärung für den merkwürdigen Umstand, daß Dürer Vitruvs zentrale Begriffe über Maß und Proportion übergeht, dürfte in deren

56 RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.163.

57 Ebd, Bd.2, S.163-164.

58 Vgl. hierzu auch die gegenteiligen Auffassungen zusammengefaßt durch RUPPRICH, Schriftilcher Nachlaß, Bd.2, S.102, Anm.18, und S.126, Anm.10.
59 Vgl. GRIMM, Deutsches Wörterbuch, Bd.7, Sp.2168-2169.
60 Vgl. ebd., Bd.10.4, Sp.1393-1395.
61 RUPPRICH, Schriftilcher Nachlaß, Bd.2, S.136.
62 Vgl. GRIMM, Deutsches Wörterbuch, Bd.4.1.5, Sp.81-82.
4. Dürer und die Gelehrten

Der seit Dante, Petrarcha und Boccaccio bis hin zu Filippo Villani und Christoforo Landino in Italien entwickelte und an antiken Vorbildern orientierte Lobgesang auf die zeitgenössische Künstlerschaft fand auch nördlich der Alpen eine Reihe von Nachahmern. So verglich Konrad Celtis den Nürnberger Maler bereits um 1500, also bevor dieser seine theoretisch sanierten Proportionsstudien begonnen hatte, nicht nur mit Apelles und Phidias, sondern pries auch die *ars simmetriae* Dürers.66 Die Kenntnis jener antiken Tradition von Malern und Bildhauern, in die Dürer schon früh gestellt wurde, hat möglicherweise einen nicht unerheblichen Einfluß auf seine ambitionierten kunsthethoretischen Pläne gehabt. Dies wird um so wahrscheinlicher, als Dürer bereits um 1500 nicht nur in engem Kontakt mit Pirkheimer stand, sondern auch kunstkritische Anregungen von seinem ersten Laudator Conrad Celtis hat bekommen können.68 Tatsächlich weist Dürers frühes kunsthethoretisches Schaffen antike Topoi auf, die bisweilen sehr offensichtlich die helfende Hand eines Humanisten verraten67 und in den zahlreichen Entwürfen zum Malereitraktat eine nicht unerhebliche Rolle spielten. Es wird vor diesem Hintergrund auch verständlich, warum Dürer dem Proportionskapitel seines Malereitrakts eine sachlich nicht unbedingt notwendige Erläuterung der Vitruvischen Proportionsfigur voranstellen wollte, denn Vitruv überlieferte ja

64 Ebd., 34.56-58., Ed. Ferri, S.80-83.
67 Vgl. etwa eine schon vor 1513 entstandene Abhandlung; Ruprich, Schriftlicher Nachlaß, Bd.2, S.127-128.
tatsächlich den einzigen konkreten literarischen Beweis für die Existenz jener Proportionen, die von den klassischen Autoren gepriesen worden waren und den antiken Bildnern zu unendlichem Ruhm verholfen hatten.

68 Vgl. PANOFSKY, Dürrers Kunsttheorie.
69 Vgl. RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.19.
70 Vgl. ebd., Bd.1, S.102.
Malereitraktat. Schon der vermutlich früheste dieser Entwürfe (1508/1509) enthält eine Legitimation kunsthistorischen Schaffens, die in direktem Bezug zu den Berichten des Plinius steht:

Item vor hundert journ sind etlich gross meister gewest, do fan Plinius schreibt, als der Apelles, Prothogines, Phidias, Praxideles, Politeklus, Parchiasios vnd dy anderen. Der etlich haben künstliche pücher beschriuen van der molerey, aber leider, leider, sy sind verloren.

[...]

Solcher pücher hab wyr aber nýmer, vnd dorum, so ein ferlorn ding vnunder pringleich ist, als dan mus man noch ein anderen trachten.71

Die in der bekannten Anekdote von den krotonischen Jungfrauen erläuterete Elektonstheorie gebraucht Dürer schließlich als Rechtfertigung für seine auf der Vermessung vieler Leiber beruhenden Proportionslehre:

Dorum hab ich jm noch gedocht vnd find, das man dy menschlichen bild awff das genewest soll messen. Dan awss der selben villen [Vienen] mag man woll etlich hübsche ding zw samen jm eins verfügen.72

In einem eigenständigen Entwurf von 1512/151373 und in einer erweiterten Fassung aus demselben Jahr, die von einem befreundeten Humanisten formuliert und niedergeschrieben worden ist, zieht Dürer die direkte Verbindung zu den verlorenen Proportionstraktaten der Antike:

So, je neher [alle künstlichen Werke] der natur vnd dem lebnn gemäß gepracht, je mer der volkumehalt zw aigen auch etwos der gotthalt gleich werden geachtet. Solches durch die proportion vnter vnzalbarn iren aigenschaften meer dan kein andere beschenhe mag. Das alles die alten vergangner jar nitt vnrutfuchbar vermerckt, bey Kriechenn sunderlich, auch Romern mer dan anndern nationen geacht. Haben die werckleufft der selbigenn hoch gepeirist, gelib vndn belodontz, vnter denen Phidias, Proxitelles, Apelles, Policletus, Parhasius, Lisippus vnd ander furtreffende, diese kunst fleissig ersucht, grunltlich erfunden vndn entlich mit vbertreffenden iren werckenn lieblich, wunderbärlich vndn zemal kunstlich angezaiget vndn an tag gepracht [haben].

[...]

Vnd zw auffenthalt vndn befestigung noch schwebender pawfelliger kunstprachunghe hab ich mich gotthlicher hilff entmitellungen vnterfangen, disse glidmessige liepliche, auch den alten nitt vngemese proportion ze beschreyben [...].74

Diese von einem gelehrten Freund humanistisch aufpolierte Stellungnahme bildet den Höhepunkt von Dürers Bemühungen, seine eigenen Studien zur Proportion in die Tradition der klassischen Antike zu stellen. In den darauf folgenden Jahren bis zur Publikation der Proportionslehre nehmen diese Bemühungen zusehends ab, und in der Proportionslehre von 1528 tauchen lediglich zwei Reminiszenzen an die oben zitierten Formulierungen auf. Zu Beginn der Widmung konstatiert er erneut, daß die Bücher der Alten verschollen seien und daher durch neue Werke ersetzt werden müßten. Auf die antiken Schriftsteller geht er aber nicht mehr extensiv, sondern nur noch am Rande ein, wenn er schreibt:

72 RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.105; dieser Entwurf 1509-1512; vgl. CICERO, De inventione 2.1.1.; eine weitere Geschichte zur Elektonstheorie bietet LUKIAN, Panthea [oder: Ikones] 6.

73 RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.103.

74 London 5230, fol.40r, RUPPRICH, Schriftlicher Nachlaß, Bd.2, S.135.
Wie alt nun disse kunst sey/ wer sy erstlich erfunden hab/ in was ansehen vnd
wirden sy etwan pey den Kriechen vnnd Ro[e]mern gewest sey [...] daiton ist yetz
on not zuschreiben/ wer aber des wissen zuhaben begert/ der lese Plinium vnd
Vitruuium/ so wirtet er derhalb gnusgsame vnderricht empfahen.75

Angesichts seiner umfangreichen eigenen Proportionsstudien hatten für Dürer
die beiden antiken Vorgaben an Bedeutung verloren; die Proportionsfigur
Vitruvs, die um 1508 noch als Etikett für ein an der Antike orientiertes Ideal
fungierte, und die Berufung auf die antiken Bildner, deren symmetria und
proportio in der frühen Phase von Dürers Kunsttheorie noch unverzichtbar
schielen, waren nun, nach zwanzigjährigem Studium der Materie, nicht mehr
relevant genug, um einen prominenten Platz in seiner Proportionslehre
einnehmen zu können. Dürer hatte sich sein Ideal zu diesem Zeitpunkt selbst
erarbeitet und damit Voraussetzungen geschaffen, die sein Verhältnis zur
Antike veränderten.

Dürers Proportionslehre im allgemeinen und seine Bearbeitung der
Vitruvischen Proportionsfigur im besonderen verdeutlichen, wie die anfängliche
Faszination mit der sowohl bildnerisch als auch literarisch angenehmten Antike
er zu einer relativvablen Angelegenheit hatte werden können. Vitruvs homo ad
quadratum und homo ad circulum sollten im 1508 projektierten Malereitraktat
dem Abschnitt über die »mas« des Menschen voranstehen, doch sie verloren
im Laufe der jahrelangen Proportionsstudien ihren Wert als Ideal. Da Dürer die
Möglichkeit entwickelte, dem bewunderten antiken Ideal eine empirisch
erarbeitete Alternative entgegenzusetzen, schmückten Vitruvs Figuren nicht das
Titelblatt der Proportionslehre; sie verblieben im Stadium des Entwurfs. Damit
hatte Albrecht Dürer - wie vor ihm Francesco di Giorgio Martini, aber im
Gegensatz zu Lorenzo Ghiberti - die Notwendigkeit überwunden, ein der
Antike entlehntes Bild dem eigenen Werk als Signum vorstellen zu müssen.

75 ALBRECHT DÜRER, Vier Bücher von menschlicher Proportion, Nürnberg 1528, fol.Aij.

1. Ein Leben als Lehrer

2 Vgl. etwa B. REUDENBACH, In mensuram humani corporis, S.671 (zit. in Kap. I.5).
künstlerischen Einflüssen unterlag Pacioli in seinen frühen Jahren auch den Anregungen, die sich aus seinen Verbindungen zur venezianischen Kaufmannschaft ergaben. Sowohl für diese Klientel als auch für einen weiteren Personenkreis verfaßte er seine arithmetischen Lehrbücher, deren Inhalt teils in kaufmännisch relevanter Rechentechnik, teils in unterhaltenden mathematischen Spielen bestand. Außerdem konnte er sich das Verdienst zuschreiben, als erster überhaupt die Methode der doppelten Buchführung publiziert zu haben.4

Die Anschauungen Paciolis lassen sich aus seinen erhaltenen Schriften rekonstruieren; zu diesen gehören neben einem unveröffentlichten Traktat über Arithmetik und der ebenfalls ungedruckt gebliebenen Schrift De viribus quantitatis5 seine beiden publizierten Werke, nämlich die zuerst 1494 und 1523 erneut erschienene Summa de arithmetica, geometria, proportioni et proportionalitate6 sowie der 1509 in Venedig herausgegebene Band De divina proportione.7 Die Summa, ein in Form mittelalterlicher Enzyklopädien angelegtes Werk, enthält sowohl eine Zusammenfassung der mathematischen Kenntnisse des 15. Jahrhunderts als auch belehrende Anekdoten und autobiographische Skizzen. Die rein mathematischen Abschnitte umfassen eine Darstellung von Arithmetik und Algebra, deren Anwendung in der Handelsrechnung, eine Erörterung der doppelten Buchführung, die Wiedergabe verschiedener Münz- und Maßverhältnisse sowie eine Abhandlung sowohl der reinen als auch der angewandten Geometrie.8 Die Schrift De divina proportione enthält den 1497 am Hofe Lodovico Sforzas verfaßten Compendio de divina proportione, den zum größten Teil auf Piero della Francesca zurückgehenden Libellus de quinque corporibus regularibus9 sowie den teilweise aus Vitruvs abgeschriebenen Tractatus de architectura; in diesem findet sich auch die Auseinandersetzung mit Vitruvs Proportionsfigur.

Luca Pacioli war in verschiedenen Städten sowie an einigen Höfen und Universitäten Italiens als Lehrer der ars metrica10 im besonderen und der mathematischen Wissenschaften im allgemeinen tätig. Seine pädagogische Karriere begann mit seiner Ankunft in Venedig, also etwa im Jahre 1464, als er in die Dienste des venezianischen Kaufmanns Antonio Rompians trat.11 Er kümmerte sich um die Erziehung der Kinder Rompiansis und erweiterte sein mathematisches Wissen bei Domenico Bragadino, der seinerzeit nahe San Giovanni di Rialto öffentlichen Mathematikunterricht erteilte. Pacioli in Venedig gesammelte pädagogischen Erfahrungen sowie seine mathematischen

5 LUCA PACIOLI, De viribus quantitatis, Bologna, Biblioteca universitaria, Codex 250 (das Ms. selbst lag mir nicht vor).
6 LUCA PACIOLI, Summa de arithmetica, geometria, proportioni et proportionalitate, Venedig 1494.
8 Vgl. die Analyse bei OLSCHKI, Geschichte der Literatur, Bd.1, S.164.
11 Vgl. STAIGMÜLLER, Paciolo, S.85-87.

Und obwohl viele, da sie weder von Vitruv noch von anderen Architekten Kenntnis haben, bauen und die Formen willkürlich bestimmen, so bedienen sie sich gleichwohl der Kunst [d.i. der Geometrie], obschon sie sie nicht kennen - gleich wie Aristoteles von den groben Bauern sagt, daß sie »Fehler machen und nicht wissen, daß sie Fehler machen.« Ebenso bedienen sich diese [die Architekten] der Kunst, ohne zu wissen, daß sie sie benutzen. Auch der Schneider und der Schuster benützen die Geometrie und wissen nicht, was sie sei; wie auch Maurer, Tischler, Handwerker und alle Künstler die Maße und Proportionen anwenden, ohne es zu wissen.

Pacioli Sorge um die theoretische Bildung von Handwerkern und Künstlern erklärt sich aus dem Umstand, daß er einerseits theoretisch versierte Künstler wie Piero della Francesca oder später Leonardo da Vinci kannte, andererseits

12 Vgl. BONCOMPAGNI, Intorno alle vite, S.408.
13 BERNHARDINO BALDI [Vita di Luca Pacioli], abgedruckt bei BONCOMPAGNI, Intorno alle vite, S.421-427, S.424.
14 PACIOLI, Summa, II, fol.76v.
15 PACIOLI, De viribus quantitatis, fols.17-18; die Widmung ist abgedruckt bei BONCOMPAGNI, Intorno alle vite, S.430-431.
16 PACIOLI, Divina proportione, S.123.
18 E benche molti fabrichino e tirino le forme afor arbitrio non hauendo piu de Victruuio che daltro architettio notitia non dimeno larte vsanno benche noi sapino si commo deli rozi rustizi dili aristotele che soligezant et nesciunt se solegizare. Così questi tali vmtur arte et nesciunt se vti. Ancora e1 sarto e calzolaro vsano la geometria e non sanno che cosa sia. El si murari legnaoli fabri e ogni artefici vsano la mesure e la proportione e non sanno. PACIOLI, Divina proportione, S.94 (Übers. nach Winterberg mit Änderungen).

2. Paciolis Proportionsbegriff

19 PACIOLI, Summa, I, fol.68v.
20 THOMAS OF BRADWARDINE. His »Tractatus de Proportionibus«. Edited and Translated by H. L. Crosby Jr., Madison (Wis.) 1955, S.66.
21 ALBERT VON SACHSEN, Tractatus proportionum, Padua 1482, c.2f.
22 BOETHIUS, De arithmetica 2.40., Ed. Friedlein S.137; vgl. auch EUKLID, Elementa 5, def.3 und 6.

28 PACIOLI, Summa, Epistola, fol.2r.
29 Ebd., fol.2, und ebd., I, fols.68r-69r.
Unbekannten verhält sich dabei die erste Größe zur dritten wie die zweite zur vierten und die erste zur zweiten wie die dritte zur vierten. Die Bestimmung der gesuchten Quantität folgt also aus dem Umstand, daß sie eine Proportionale der bereits bekannten Größen ist. Diese vor allem kaufmännisch angewandte Rechenregel wird auch von Pacioli in seiner Summa als ein proportionales Verfahren zur Ermittlung von Geld- und Warenwert beschrieben. Die Bedeutung der Dreisatzrechnung für das Verständnis von Proportion und Proportionalität zeigt sich noch bei Cesare Cesariano, der die regola delle tre cose oder regola maggiore kurzerhand mit der divina proportione gleichsetzt.

Nikolaus von Kues hat in seiner Schrift Idiota de mente argumentiert, daß die demütige Weisheit des Laien in den Plätzen ruft, also an jenem Ort, an dem gezählt, gemessen und gewogen wird. Hiermit weist der Cusaner auf eine Würde von Maß, Zahl und Gewicht hin, die im Gegensatz zur nur theoretischen Weisheit der Bücher steht. Dem praktizierenden Mathematiker und Lehrer Pacioli stellte sich das umgekehrte Problem, denn durch seine Erörterung der Proportionen im Kontext der alltäglichen Praxis von Zählen, Messen und Wiegen hatte er nicht nur auf ihre Bedeutung, sondern auch auf ihre Trivialität hingewiesen. Er bezieht sich auf diese Trivialität, wenn er die Ignoranz der zeitgenössischen Handwerker und Architekten gegenüber dem tieferen Sinn von Proportion und Geometrie beklagt (s.o.). Für Pacioli bestand damit eine Kluft zwischen der praktischen Anwendung mathematischer Wissenschaften einerseits und ihrer theoretisch geforderten höheren Bedeutung andererseits.

Die verschiedenen Teile der Divina proportione und besonders die Erörterung der fünf regelmäßigen Körper Platons sind ein Versuch, diesem Mißstand abzuhelfen. Im Compendio de divina proportione selbst werden daher die Polyhedra und ihre komplizierte Konstruktionsmethode erläutert, denn diese Körper haben insofern einen tieferen Sinn, als sie die elementare Zusammensetzung des Kosmos repräsentieren. Pacioli bezieht sich hierbei auf den zwischen 1463 und 1469 von Marsilio Ficino ins Lateinische übersetzten und zuerst 1484 vollständig gedruckten Timaeus Platons. Dem Timaeus sowie dem Kommentar Ficinos konnte er entnehmen, daß der Tetraeder (Pyramide) für das Feuer, der Hexaeder (Würfel) für die Erde, der Oktaeder für die Luft und der Ikosaeder für das Wasser steht. Der alle anderen Formen umfassende Dodekaeder schließlich ist der perfekteste der regelmäßigen Körper, und er repräsentiert die quinta essentia, die fünfte Substanz, dem der Himmel selbst sein formales Dasein (lesser formale) verdankt. Mit seiner kunsttheoretisch motivierten Diskussion der fünf regelmäßigen Körper drang Pacioli in eine damals neue Materie ein, denn die Erörterung dieser Körper fehlte in der

33 PACIOLI, Summa, I, fol.69r.
36 PACIOLI, Divina proportione, S.43.
während des Mittelalters gebrauchten Timaeusübersetzung des Chalcidius37, und Pacioli war möglicherweise der erste Kunsthistoriker überhaupt, der der vollständige Text Platons in einer lateinischen Übertragung vorlag. Dieser Umstand scheint in der schon ab 1487 verfaßten Summa noch eine geringere Rolle gespielt zu haben, denn die dortige Auseinandersetzung mit den Polyhedra38 geht kaum über ihre frühere Darstellung durch Fibonacci (d.i. Leonardo von Pisa) in der ersten Hälfte des 13. Jahrhunderts und Calandris hinaus.39 Paciolis theoretische Diskussion der Polyhedra in der Divina proportione ist um so bemerkenswerter, als der Übersetzer und Kenner des Timaeus selbst, Marsilio Ficino, angesichts der in »dunklen Metaphern« (sub obscuris metaphoris) verpackten Dinge Platons die Lektüre des klarer argumentierenden Aristoteles empfahl.40 Pacioli gegenüber Ficino erweiterte Auseinandersetzung mit den Platonischen Körpern basierte möglicherweise auf seiner Vertrautheit mit der einschlägigen Fachliteratur. So benutzte er neben dem in die Divina proportione inkorporierten Tractatus de quinque corporibus regularibus Piero della Francescas auch die Elemente Euklids, deren lateinische Übersetzung er 1509 edierte.41 Erst die in diesen Schriften niedergelegte Darstellung der Stereometrie ermöglichte eine verständige Interpretation der Polyhedra.42 Damit entwickelte Pacioli eine theoretische Auseinandersetzung mit den Platonischen Körpern, die nicht nur gemessen an dem Kenntnisstand der damaligen Künstler bemerkenswert war.

Nachdem Pacioli die sowohl physische als auch metaphysische Würde der fünf regelmäßigen Körper dargestellt hat, kommt er auf ihre schwierige geometrische Konstruktion und schließlich auf ihre irrationale Proportion zu sprechen. Er argumentiert, daß die irrationale Proportion eine besondere Beziehung zu Gott und seiner Schöpfung habe, weil das Geheimnis dieser Proportion, das bisher allen Lebenden verborgen geblieben sei, ebensowenig rational definiert werden könne wie Gott selbst.43 Pacioli bezieht sich mit diesem Verständnis der irrationalen und damit göttlichen Proportion auf die dem Dodekaeder zugrundeliegende Konstruktionsmethode, die auf denselben Streckenverhältnissen beruht wie die des divina proportione genannten goldenen Schnitts. Diese Proportion besagt, daß im Fall von zwei miteinander verglichenen Strecken die größere sich zur kleineren zu verhalten habe wie beide zusammen zur größeren (a:b = [a+b]:a).44 Die divina proportione entsteht ebenfalls bei der Konstruktion des Pentagons, das wiederum die ebene geometrische Grundfigur für die Herstellung des Dodekaeders ist.45 Mithilfe des

38 PACIOLI, Summa, I, fol.4, II, fol.68v-70v.

39 Vgl. DAVIS, Piero della Francesca’s Treatises, S.30-38.

40 MARSILIO FICINO, Opera Omnia, 2Bde., Basel 1576 (Nachdruck Turin 1962), Bd.1, fol.1464v; vgl. SANDERS, Bovelle’s Treatise, S.516-517.

41 [LUCA PACIOLI (Hrsg. und Komment.)], Euclides megarensis philosophi [...] opera [...], Brescia 1509.

42 Vgl. OLSCHKI, Geschichte der Literatur, Bd.1, S.222.

43 PACIOLI, Divina proportione, S.34 und 43.

44 Vgl. NAREDI-RAINER, Architektur und Harmonie, S.185-187 und S.193-199 (zit. Eltg.).

45 EUKLID, Elementa 4.11-14.; vgl. HEATH, Euclid’s Elements, Bd.2, S.96-107.
Dodekaeders, der als vollkommenster der fünf regelmäßigen Körper die höchste Substanz des Himmels repräsentiert und gleichzeitig das rational nicht faßbare Geheimnis der göttlichen Proportion enthält, konstituiert Pacioli also einen allgemeinen und kunsttheoretisch signifikanten Proportionsbegriff, der über die Trivialität der alltäglichen Proportion des Messens und Zählens hinausgeht. Damit hatte er die kunsttheoretische Bedeutung von Proportion und Proportionalität sanktioniert.

3. Paciolis Anthropomorphismus

Paciolis logisch-mathematisches und handelsarithmetisches Verständnis der Proportion sowie deren kunsttheoretische Aufwertung durch die von ihm so genannte divina proportione bilden die Voraussetzung für seine Auseinandersetzung mit dem architektonischen Anthropomorphismus. Paciolis Erörterung dieser architekturtheoretisch vor allem in Künstlerkreisen diskutierten Auffassung resultiert aus einer Interpretation des Vitruvischen Proportionskanons, und sie ergibt sich damit sowohl aus dem unmittelbar anthropomorphem Verständnis der Anschauungen Vitruvs als auch aus der vom Menschen abgeleiteten und in der Baukunst angewandten Metrologie. Neben der Architektur selbst, die verschiedene Abteilungen wie Theater, Bäder, Latrinen, Straßen, Plätze, Hallen und Brunnen habe, nennt er die Glieder der Gebäude, also etwa die Säle, Zimmer, Vorzimmer, Treppen, Fenster und

\(^{46}\) PACIOLI, Divina proportione, S.93-95.
\(^{49}\) Vgl. Wasmuths Lexikon der Baukunst, Bd.3, Berlin 1931, S.497.
Ballustraden. Alle diese Teile haben debiti symmetrie de proportioni e proportionali a al corpo tutto delo hedificio.30 Schließlich betont er, daß die Steinmetzen sich besonders bei den Tempelfassaden, den Säulen und Gesimsen der menschlichen Maße und Proportionen zu bedienen hätten.31 Mit dieser Bemerkung bezieht sich Piacioli auf den wörtlich verstandenen Anthropomorphismus, den etwa Francesco di Giorgio Martini ausdrückt, wenn er den Fassadenaufriß, Säulendarstellungen und Gesimsquerschnitten einen ganzen menschlichen Körper oder einige seiner Teile einschreibt. Danach, in seinem Kapitel »über das Maß und die Proportionen des menschlichen Körpers, vom Kopf und von seinen anderen Gliedern als Abbild der Architektur«32, erweitert Piacioli den Anthropomorphismus mit dem Hinweis auf Platon's Timaeus. Doch interpretiert Piacioli nun nicht das Gebäude im anthropomorphen, sondern den menschlichen Körper im architektonischen Sinne. So versteht er den Kopf als eine Zitadelle, deren sieben Schießscharten den Öffnungen für Augen, Ohren, Nasenlöchern und Mund entsprechen. Wieder zur Architektur zurückkehrend argumentiert Piacioli, daß dies Bild von der Festung zu träfen, da die ganze Stadt ebenso deren Leid empfinde wie der Körper die Schmerzen des Kopfes. Der Hinweis auf Platon's Timaeus, mit dem die architektonische Interpretation des Körpers beginnt, ist allerdings irreführend, da im Timaeus der mit dem Weltganzen vergleichbare Kopf nur insofern erwähnt wird, als ihm der Körper mit Händen und Füßen zuwuchs, damit er nicht willkürlich in der Gegend herumrollte.53 Platon erwähnt keineswegs die mit den Schießscharten einer Festung verglichenen sieben Öffnungen des Kopfes; viel mehr scheint Piacioli zwei Anschauungen anderer Provenienz hinzugezogen zu haben, nämlich einerseits die im Mittelalter, etwa bei Honorius Augustodinensis54 ausgeführte Vorstellung, daß die sieben Öffnungen für die Augen, die Ohren, die Nasenlöcher und den Mund der Harmonie der sieben Himmel entsprechen, sowie andererseits die bei Francesco di Giorgio Martini ausführlich formulierte anthropomorphe Auffassung, daß der Kopf dem menschlichen Körper aufsitze wie die Zitadelle der Stadt. Mit dieser Auffassung beginnt Francesco di Giorgio tatsächlich die frühere Version seiner Trattati di architettura, deren erstes Kapitel dem Festungsbau gewidmet ist. Von einer Benutzung der architekturntheoretischen Abhandlungen Francesco di Giorgios durch Piacioli zeugt der Umstand, daß die Handschriften der Trattati di architettura sowohl die Zeichnung eines Mannes mit einem festungsbezeugten Kopf enthalten55, als auch andere anthropomorphe Darstellungen, die mit Piacolis Beschreibungen übereinstimmen.56 Das heute als Codex Ashburnhamianus 361 bekannte

30 PACIOLI, Divina proportione, S.128.
31 Ebd., S.129.
32 Dela mesure e proportioni del corpo humano. della testa e altri suoi membri simulacro delarchitectura. Ebd., S.130-133.
33 PLATON, Timaeus 16 (44d-45b).
34 HONORIUS AUGUSTODINENSIS, Elucidarium I.11., PL172, Sp.1116.
35 FRANCESCO DI GIORGIO, Trattati di architettura, Bd.1, Taf.1 ([zit. in Kap. IV.4] d.i. Turin, Biblioteca Reale, Codex Saluzzianus 148, fol.3v; eine Kopie dieser Zeichnung existiert auch in Venedig, Biblioteca Marciana, Ms. It.IV. 3-4 (5541), fol. 1v [benutzt in einer photogr. Reproduktion, Courtauld Institute, Conway Library, London]).
36 Vgl. FRANCESCO DI GIORGIO, Trattati di architettura, Codex Saluzzianus 148, fol.11v, 12v, 14v, 15v, 16v, 21; vgl. die Abb. in der Ed. Maltese, Bd.1, Taf.18, 19, 24, 25, 28 und 37-38; vgl. die Originalen, Florenz, Biblioteca Laurenziana, Codex Ashburnhamianus 361, fol.10v, 11v, 13v, 15v und fol.21v [benutzt in einer photogr. Reproduktion, Courtauld Institute, Conway
Manuskript, das ebenfalls die genannten anthropomorphen Zeichnungen aufweist, könnte Pacioli tatsächlich gekannt haben, denn Leonardo, mit dem er zwischen 1500 und 1506 in Florenz zeitweise zusammenwohnte, hatte es zwischen 1506 und 1508 mit Glossen versehen. Pacioli kombinierte also das in Künstlerkreisen bekannte und unmittelbar anthropomorphe Verständnis von Architektur einerseits mit den kosmologischen Vorstellungen Platons und den beispielhaft bei Honorius formulierten Gedanken zum Mikrokosmos andererseits.

58 Pacioli, Divina proportione, S.131.

59 Ebd., S.136.

60 Francesco Di Giorgio, Trattati di architettura, Biblioteca Reale, Turin, Codex Saluzzianus 148, fol.6V (Abb. in der Ed. Maltese, Bd.1, Taf.8), und Biblioteca Marciana, Venedig, Ms. il IV, 3-4 (5541), fol.1-164, fol.1V [benutzt in einer photographischen Reproduktion, Courtauld Institute, Conway Library]; Biblioteca Laurenziana, Florenz, Codex Ashburnhamianus 361, fol.5V.

61 Francesco Di Giorgio, Trattati di architettura, Biblioteca Laurenziana, Florenz, Codex Ashburnhamianus 361, fol.5V.
angesichts der einerseits nicht sehr verständigen und andererseits auf der Kenntnis der martinianischen Zeichnung beruhenden Ausführungen Pacioliis zu Vitruvs Proportionsfigur ist dies unwahrscheinlich.

Neben seiner Interpretation des architektonischen Anthropomorphismus, die er aus antiken (Vitruv und Platon), mittelalterlichen (Honorious) und zeitgenössischen Quellen (Francesco di Giorgio) kombiniert, erläutert Pacioli auch die Bedeutung der gleichfalls anthropomorph hergeleiteten Metrologie für die Baukunst. Deren Standardmaße belegen (nach der unmittelbar anthropomorphen Architekturauffassung) die Relevanz der menschlichen Proportionen für die Gebäude:

62 Cioe primo diremo dela humana proportione respecto al suo corpo e membri pero che dal corpo humano ogni misura con sue denominationi deriu e in epso tutte sorti de proporzioni e proportionalita se ritrou con lo deta de lalissimo [digitus Dei, vgl. 1.Moses 8,15 und Lukas 11,20.] mediante li intrinseci secreti dela natura. E per questo tutte nostre misure e instrumenti a dimensioni deputati perli publici e privati come e disto sono denominate dal corpo humano luna detto bracio laltr passo, laltr pede, palma, cubito, digit, testa, etc. E cosi comme dici el nostro Vitruvio a sua similitudine dobbiam proportionare ogni hedeficio con tutto el corpo ben a suoi membri proportionato. PACIOLI, Divina proportione, S.129.
sechs Fuß enthält; dadurch entspräche ein Fuß in der Zeichnung (oder im Modell) einem Klafter im Original. Andere Proportionen ergeben sich aus den Konventionen der anthromorphen Metrologie: da der Fuß vier Handbreiten enthält, entspräche in diesem Fall einem Viertel des Maßstabes in der Zeichnung dem anthropomorphen Maß einer Handbreite; die Handbreite wiederum wäre im Original eine Elle, denn der Klafter wird zu vier Ellen gerechnet.

Daß Pacioli in seiner Diskussion der Vitruvischen Proportionsfigur tatsächlich die in dieser Figur enthaltene Proportionalität maßstäblicher Übertragung (vgl. Kap. II) im Sinn hatte, belegen jene Ausführungen, mit denen er den Abschnitt über die menschlichen Proportionen abschließt. Dort stellt er die als Standardmaße verstandenen menschlichen Proportionen ausdrücklich in einen Zusammenhang mit dem Prinzip maßstäblicher und damit proportionaler Übertragung:

Den schon angegebenen Proportionen gemäß könnt ihr in euren Werken eine andere größere oder kleinere [Proportion] annehmen, welche, wenn sie gut in ihre Unterabteilungen geteilt, seiner Höhe entsprechen wird, sei es ein Riese oder ein Zwerg, und man wird sie richtig verkleinert (degradeate) nennen. Und nach ähnlicher Methode verhalten sich die Kosmographen in ihren Welt- und sonstigen Seekarten, indem sie ihre Maßstäbe (gradi) zur Seite setzen, mit denen sie die ganze Welt proportionieren u.s.w. Es würden hierüber viele andere im Menschen gelegte Teile zu nennen sein, sofern er von den Weisen kleine Welt genannt worden. Gleichwohl, da ich hier nicht beabsichtige, von besagter Architektur, wie wir vorher gesagt haben, vollständig zu handeln, indem wir uns die schon erwähnten für mehr Muße vorbehalten, so will ich sie für euren Zweck hinsichtlich der Skulptur genug sein lassen.63

63 Secondo legge dette proportioni, porrete in lopere vostre propome vna altra magior e menore la qual ben diuisa in suoi gradi rispondera alla sua altezza siando gigante e ancor nanino e chiamaranne debitamente degradeate. E asimil maniera se reggano li cosmographi in lor mappamondi e altre carti naviganti ponendo lor gradi da parte con li quali proportionano tutto el mondo et cetera. Seria circa cio da dir molte altre parti nell homo poste conciosia che dali sapimenti lui sia chiamato mondo piccolo non dimeno per che qui non intendo de dicta architettura comme disopra diciemmo apieno tractare res supervandi apiu ocio legia dette voglio al proposito vostro della scultura sieno bastanti. PACIOLI, Divina proportione, S.138.

64 Ebd., S.140.

4. Der Mensch als Sinnbild der Architektur

65 GHIBERTI, I commentarii, Bd.1., S.41-42, 2.12 (zit. in Kap.IV.2).
66 [LUCA PACIOLI], Euclides opera, fol.31v.

68 [PLATON], Il dialogo di Platone, intitolato il Timeo, overo della natura del mondo, tradotto di lingua greca in Italiana da M. Sebastiano Erizzo [hrsg. v. Girolamo Ruscelli], Venedig 1558, c.177-181.

1. Vitruvstudien seit dem Ende des Quattrocento

an Vitruv neben philologischen und technischen Details auch den Fragen der bildenden Kunst und Architektur galt.7 Andere Vitruvstudien, die verschiedene Gesichtspunkte umfassen konnten, finden sich in den Enzyklo-

Ein jüngeres Mitglied derselben Familie, nämlich Giovanni Battista da Sangallo, genannt il Gobbo (1496-1552), hatte sich ebenfalls mit Vitruv beschäftigt; wahrscheinlich zwischen 1511 und 1521 stattete er seine Vita-
ruvasgabe, die editio princeps von 1486, mit einer Vielzahl bisweilen kom-

8 GIORGIO VALLA, De expectendas et fugiendis rebus opus, 2Bde., Venedig 1501, Bd.2, Lib.42, cap.2, fol.s.47v-47v.
9 RAFFAELO VOLATERRANO MAFFEO, Commentarium urbanorum octo et triginta libri, Paris 1515 (zu erst 1506), 26, fol.s.40v-40v.
12 Vgl. Vitruvio e Raffaello (zit. in Kap. V.2, Anm.15).
15 Rom, Biblioteca Corsiana, Inc. 50 F.I; mir lagen Photographien von Howard Burns vor, die sich in London, Conway Library, Courtauld Institute, befanden.
So ist der Fuß zwar 16 2/3 digit lang und entspricht damit der bei Vitruv angegebenen Dimension (1/6 der Körperhöhe), doch widerspricht diese Vorgehensweise dem in *De architectura* beschriebenen Prinzip, alle Proportionen als Bruchteile der Körperlänge anzugeben; offenbar zog Sangallo ein Modulverfahren mit dem *digitum* als kleinster Kalkulationseinheit vor. Die letzte Zeichnung, die den *homo ad circulum* darstellt (Abb. 16), weist keine nennenswerten oder im Sinne eines Systems verifizierbaren Proportionen auf und stellt schlicht einen Mann dar, dessen Glieder genügend gespreizt sind, um den Nabel der Figur in den Mittelpunkt eines umschreibenden Kreises zu legen. Sangallos Interessen an Vitruvs *homo ad quadratum* und *homo ad circulum* beschränkten sich damit weitgehend auf die Varierung eines antiken Proportionskanons; mit größerem Eifer widmete er sich den in *De architectura* beschriebenen Gebäudetypen und den architektonischen Details. 16

2. Fra Giovanni Giocondo

Eine folgenreiche Verbindung humanistischer und praktischer architektonischer Interessen vollzieht Fra Giovanni Giocondo (ca.1433-1515) mit seiner Vitruvausgabe von 1511, die neuerdings als ein Wendepunkt in der Vitruvrezeption überhaupt angesehen wird. 20 Zwar verbesserten schon die *editio*

18 PIETRO CATANEOS, L’architettura, Venedig 1567, S.75; vgl. hiermit auch die beinahe identische, aber statt fünf lediglich vier Bücher umfassende Version des Traktats von 1554 bei BAROCCI, Scritti d’arte, Bd.3, S.3185-3231, bes. S.3222.

19 FRANCESCO MARIO GRAPALDI, De partibus aedium, Parma 1494; vgl. SCHLOSSER, La Littérature artistique, S.275 und S.278.

princeps und ihre Neuausflagen von 1496 und 1497 die Verfügbarkeit des sowohl technisch als auch stilistisch schwierigen und korrupten Textes, doch etablierte erst die philologisch wie technisch fundierte Arbeit Giocondos eine im heutigen Sinne benutzbare Ausgabe. Wie ihr Autor schreibt, zielten seine Bemühungen auf die Lesbarkeit und Verständlichkeit des Textes selbst, was bereits ahnen läßt, daß dies durch die Inkunabeln nicht in befriedigendem Maße gewährleistet war. Giocondo kollationierte die auf der Handschriftenfamilie »H« basierenden Ausgaben des 15. Jahrhunderts mit den bis dahin in Italien unberücksichtigten Manuskripten der Familie »G« und schuf so eine breitere Grundlage für seine textkritische Vorgehensweise. Daneben steuerte er 136 Abbildungen bei, die nicht nur die verlorenen Illustrationen Vitruvs ersetzen, sondern auch zur Erläuterung schwieriger Passagen beitragen sollten.²¹

Den Körper des Menschen hat nämlich die Natur so geformt, daß das Gesicht vom Kinn bis zum oberen Ende der Stirn und dem untersten Rande des Haarschopfes 1/10 beträgt, die Handfläche von der Handwurzel bis zur Spitze des Mittelfingers ebensoviel, der Kopf vom Kinn bis zum höchsten Punkt des Scheitels 1/8, ebensoviel vom unteren Nacken.²⁴

²⁴ Corpus [c]n[im] ho[m]nis ita natura co[m]posit, vti os capitis a mento ad frontem su[m]ma[m] & radices imas capilli esset decimae parus, ltc[m] manus palma ab articulo ad extremum [m] medius[m] digitum[m] ta[n]tu[m]nem. Caput a mento ad su[m]ma[m] vertice[m], octauae, Ta[n]tu[m]undem ab cervicibus imis [...]. M. Vitruvius per lucendum solito castigator factus, cum figuris et tabula, ut iam legi et intelligi possit, Venedig 1511, fol.22.

3. Sagreda, Ryff, Martin und Goujon

26 FRANCESCO LUTIO DURANTINO, M. L. Vitruvio Pollione de architettura traducto di latino in volgare, Venedig 1524.

Von den drei großen Kommentaren unabhängige Standpunkte hinsichtlich der Proportionsfigur Vitruvs finden sich in den Ausführungen Diego de Sagredos und Walter Ryffs sowie in der Übersetzung und den Illustrationen der französischen Ausgabe von 1547. In seinem kleinen Traktat über die »Masse der Römer« und die »Formen der Basen, Säulen, Kapitelle und anderer Teile der antiken Gebäude« legt Diego de Sagredo besonderen Wert auf eine direkte anthropomorphe Architekturauffassung; deren sich bis auf die Konstruktion von Gesimsen erstreckende Gültigkeit begründete er mit einer mikrokosmologischen Auslegung des Menschen:

34 Conclusion muy auerguada es entre los filosofos/ ser el hofmabre de mayor y mas complida perficion de todas las criaturas: por tanto le llamaron[n] Microcosmo que quiere dezir menor mundo: porque ninguna cosa ay ta[n] substida y estimade enel mu[n]do que enel hombre no se halle. y como los primers fabricadores no tuvisen reglas para traçar/ repartir y ordenar sus edificios: pareciolos deuyan imitar la com[p]osicion del hombre: el qual sue criado y formado de natural proporcion: y esculpindo los tercis y escudriñando las medidas de su estatura/ y cotejando vnos miembros a otros: hallaron la cabeça ser mas exce[n]te: y della todos los otros:
Diesem Abschnitt folgen längere Ausführungen über einen fälschlicherweise dem Varro zugeschriebenen Proportionskanon sowie weitere Angaben, die Pomponius Gauricus, Luca Pacioli und Vitruv entnommen sind. Erst danach und getrennt von den durch Vitruv überliefernten Proportionen selbst erwähnt er dessen *homo ad quadratum* und *homo ad circulum*, um auf die in der Antike entwickelte architektonische Bedeutung der »natürlichen« Figuren von Kreis und Quadrat hinzuweisen.

Auf eine Interpretation des Menschen als Mikrokosmos geht auch der Nürnberger Arzt, Gelehrte und Übersetzer Walter Ryff ein, doch kommt er zu anderen Schlußfolgerungen als der baupraktisch kenntnisreichere Sagredo. In Ryffs Auseinandersetzung mit Vitruvs Proportionsfigur finden sich einige Bemerkungen, die ausnahmsweise nicht aus Cesarianos Comaker Vitruv abgeschrieben sind; hierzu gehört auch ein Abschnitt darüber, »wie die proportion vnd gerecht Symmetri der stellung der Gebew [...] von der aller gerechtisten form«, nämlich vom Menschen stammen. Daher argumentiert Ryff, daß der Mensch als Ebenbild und herrlichstes Wunderwerk Gottes mit seinen Proportionen den göttlichen »grundt« für die Architektur abgebe:

como de miembro mas principal tomauan medida y proporcion: porque de su rostro sacauan el compas para formar los braços/ las piernas/ las manos/ & finalemente todo el cuerpo: de donde tomaron ciertas reglas y medidas naturales para dar proporcion & autoridad a los repartimientos y ordenancias de sus edificios. De manera que todo edificio bie[n] ordenado y repartido es comparado al ho[m]bre bien dispuesto y proporcionado. SAGREDO, Medidas del romano, c.Alijy^5-Ayw^5.

Im Rückgriff auf die Antike, auf die Praxis der »Alten«, formuliert Ryff den Gemeinplatz von der gottesgebildlichen Vornehmheit des Menschen, welche die Begründung für eine anthropomorphe Architekturenuss abgebe. Wie vor ihm Sagredo fügt er einen weiteren Topos hinzu, nämlich den vom Menschen als Mikrokosmos, um erneut die Eignung und Würde des menschlichen Körpers hinsichtlich seiner architektonischen Nützlichkeit zu betonen: denn nicht nur der Mensch an sich, sondern auch der Mensch in seiner Eigenschaft als verkleinertes Abbild der weltlichen wie außerweltlichen Zusammenhänge sei zu Recht das Vorbild für architektonische Werke.

Einen anderen Standpunkt als den der genannten Kommentatoren nehmen Jean Martin (gest. ca.1553), der Übersetzer, und Jean Goujon (gest. ca.1564/1568), der Illustrator der ersten französischen Vitruvausgabe ein. Obwohl der zuerst 1547 erschienene Foliant keine direkten Kommentare enthält, geben der Text Martins und dessen Illustration durch Goujon Aufschluß über die Gedanken der beiden Franzosen. Die Übersetzung folgt - im Falle des Proportionskanons - nicht den Inkunabeldrucken, sondern der durch Giocondo eingeführten Korruption, und der Übersetzer greift gelegentlich paraphrasierend und sogar erläuternd in den Text ein, etwa um die Dimensionen von Fuß, Elle und Brust näher zu bestimmen.37

Sein Verständnis des \textit{homo ad quadratum} läßt

36 RYFF, Vitruvius Teutsch, fol.102v.v

37 MARTIN, Architectvre, fol.Ejvv.v
auf baupraktische Kenntnisse schließen, denn Vitruvs nach dem Winkelmaß (norma) quadratisch angelegte Flächen (3.1.3.) übersetzt er als Flächen (chooses plattes), die mithilfe des Richtscheits (regle) nach dem Winkelmaß genormt (esquarries) sind. Die Illustrationen andererseits geben kaum Hinweise auf eine wörtliche Auslegung der Angaben Vitruvs; der Nabel bildet in keinem der beiden Holzschnitte das Zentrum der Figur, und die erste Illustration, deren figürliche Haltung von Sagredo und deren gesamte Komposition von Cesariano inspiriert ist, verrät die Kenntnis baugeometrischer Zusammenhänge (Abb. 18).
So hält ein locker kontrapostisch aufgestellter Mann im Quadrat jenen Zirkel, mit dessen Benutzung die ihn umschreibenden Quadrate, die dem Prinzip der mittelalterlichen Quadratur folgen, konstruiert werden können. Gleichzeitig bildet diese geometrische Konstruktion ebenso wie diejenige Cesarianos ein Raster, das - basierend auf dem Modul einer Gesichtslänge und dessen Dreiteilung - als architektonisches Entwurfsschema verstanden werden kann und zur Herstellung der maßstäblich verkleinerten Architekturzeichnung dient. Eine Erklärung für die an der Baupraxis orientierte Illustration ergibt sich nicht nur aus ihrer Inspiration durch Cesarianos Version, sondern auch aus der künstlerischen Karriere des Illustrators Jean Goujon, der als praktizierender Bildhauer und entwerfender Architekt tätig war.

4. Cesariano, Philandrier und Barbaro

IX. CESARE CESARIANO

1 Di Lucio Vitruvio Pollione de Architectura Libri Dece traducti de latino in Vulgare afigurati: Co[m]mentati: & con mirando ordine Insigniti: per il quale facilmente potrai trovare la multitudine de li abstrusi & reconditi Vocabuli a li soli loci & in epsa tabula con summo studio expositi & enucleati ad Immensa utilitate de ciascuno Studioso & beniuolo di epsa opera, Como 1521.
2 GIORGIO VALLA, De expetendis et fugiendis rebus opus, 2Bde., Venedig 1501, Bd.2, fols.LLiiiv und niiiiv; vgl. CESARIANO, Vitruvio, fol.14v; Cesarianos Bezug auf HERON, Definitiones 135.13, über Vitruvs »scenographia«, geht allem Anschein nach auf Valla zurück.
1. Cesarianos Comaker Vitruv von 1521

Cesarianos Vorbereitungen zum Comaker Vitruv müssen schon vor 1513, dem Jahr seiner Rückkehr nach Mailand, begonnen haben, denn zu diesem Zeitpunkt gelang es ihm, die von seiner übelmeinen Stiefmutter gestohlenen Vitruvstudien zurückzueroieren. Der Großteil der Arbeit dürfte jedoch zwischen 1517, dem Entstehungsjahr des am frühesten datierten Holzschnitts, und 1521, dem Jahr des Erscheinens der Vitruvausgabe, zu datieren sein. Aufgrund der politischen Wirren in Oberitalien sowie in Anbetracht finanzieller Schwierigkeiten, die Cesariano zu anderen Tätigkeiten nötigten, ging die Arbeit

5 Vgl. CESARIANO, Vitruvio, fol.4v.
6 GIORGIO VASARI, Le vite de' più eccellenti pittori scultori ed architetti, hrsg. v. G. Milanesi, Bd.4, Florenz 1879, S.149.
7 CESARIANO, Vitruvio, fol.4v, 48v, 137v-138f und 143v-145f.
9 CESARIANO, Vitruvio, fol.91v.
10 Ebd. (zur »cosmographia« vgl. Kap. VII.3).
11 Vgl. CESARIANO, Vitruvio, fol.91v.
12 Vgl. KRINSKY, Cesarianos Vitruvius, S.9.

2. Zirkel und Richtscheit

Die Motivation für eine intellektuell ambitionierte Vitruvausgabe ergibt sich zu einem großen Teil aus dem Wunsch ihrer Autors, den Mangel an einer regulären universitären und institutionalisierten Ausbildung wettzumachen. Cesarianos Vitruvstudien repräsentieren in diesem Zusammenhang also geschichtliche Ansprüche, etwa wenn er über die Behinderung wissenschaftlicher Studien durch eine unzureichende soziale Stellung klagt:

13 Vgl. VERZONE, Cesariano, S.205.
15 Vgl. KRINSKY, Cesariano’s Vitruvius, S.7; für die gegenteilige Ansicht vgl. TAFURI, Cesariano e gli studi vitruviani nel Quattrocento, S.387-438, S.408 (cit. Kap. VIII.1, Anm.1).

Im Anfang war das Wort, und das Wort war bei Gott [...] Alles war durch dasselbe, und ohne dasselbe ward nichts, was geworden ist. In im war Leben, und das Leben war das Licht der Menschen: und das Licht scheint in der Finsternis, und die Finsternis hat es nicht ergriffen.\(^{19}\)

Das Wort, als Wurzel und Ursprung der theoretischen Bildung, erzeugt für Cesariano jenes göttliche Licht, das sowohl die praktischen als auch die theoretischen Aspekte der Architektur illuminiert. Aus beiden Komponenten setzt sich die Vorgehensweise Cesarianos zusammen, denn während die Werkzeuge wie Zirkel und Maßstab, die gleichzeitig auch Attribute der Geometrie und damit der freien Künste sind, auf seine handwerkliche Ausbildung verweisen, repräsentiert das Wort jene höhere Bildung, die Cesariano für seine Vitruvstudien benötigte. Hierbei spielten Bücher eine besondere Rolle, denn deren durch den Buchdruck erweiterte Verfügbarkeit

\(^{17}\) Ebd., fol.92f.
\(^{18}\) FILARETE, Trattato di architettura, Bd.1, S.148 (zit. Kap. IV.3).
bildete die Grundlage seiner autodidaktischen Vorgehensweise. Dementsprechend schrieb Cesariano, daß der Buchdruck als eine die Kunst und Wissenschaft verfeinernde Methode den alten, auf Handschriften basierenden Überlieferungen von Wissen überlegen sei.²⁰

Die Geometrie aber bietet der Architektur viele Hilfen; und besonders vermittelte sie den Gebrauch von den Gradlinigkeiten des Zirkels, was besonders bei den planen Flächen der Gebäude [d.i. beim Grundriß?] sehr leicht die Ausrichtung des Winkelmaßes, der Setzwaage sowie das Zeichnen der Linien gewährleistet.²³

Der Übersetzung folgt eine Kommentierung, die belegt, daß Cesariano eine genaue Vorstellung von der Bedeutung dieser Textstelle hatte:

Schließlich sagt Vitruv nichts anderes, als daß man vom guten Ausmessen des Zirkels alle Linien genauestens überbrückt, die für die Formgebung der von uns beabsichtigten Werke notwendig sind.²⁴

²⁰ CESARIANO, Vitruvio, fol.27².
²¹ L. Vitruvi Pollionis de Architectura libri decem, Florenz 1496, fol. ai²; L. Vitruvii Pollionis de Architectura libri decem, Venedig 1497, fol.A²; M. Vitruvius per Jocundum solito castigator factus cum figuris et tabula ut jam legi et intelligi possit, Venedig 1511, fol.Ai²; Vitruvius iterum et Frontinus a Jocundo revisi repurgatique quantum ex collatione licuit, Florenz 1513, fol.27².
²³ Ma la Geometria molti presidii presta al Architettura. Et primamente da le Euthygra[m]mate di circco transferisse lo uso da il quale maximamente in le areae de li aedificii piu facilmente si expediscono le descriptione de le norme: & de le libratione: & la direzione de le lineae. CESARIANO, Vitruvio, fol.4².
²⁴ Adunque Vitruvio non intende altramente che dal bon co[m]mensurare dii circco si transferiscono de puncto a puncti tote le lineae che sono opportune ale formatione de le opere che inte[n]demo fare. Ebd.

3. Maß, Mensch und Metrologie

Cesarianos großformatige Illustrationen zu Vitruvs homo ad quadratum (Abb. 20) und homo ad circulum (Abb. 21) vereinigen das bereits in der Konjektur offenbarte metrologische Verständnis der Vitruvischen Proportsionsfigur mit generellen Aspekten der Gebäudeproportionierung und mit der Baugeometrie. Der homo ad quadratum zeigt neben den bei Vitruv erläuterten anthropomorphen Standardmaßen das architektonisch relevante Schema der

25 Ebd., fol.48r.
Quadratur.26 Der Mensch mit ausgebreiteten Armen wird umschrieben von einem Quadrat, dessen Seitenlänge der Diagonale eines eingeschriebenen kleineren Quadrats entspricht. Man kann Vitruvs Ausführungen zwar nicht unmittelbar entnehmen, daß eine solche Auslegung des *homo ad quadratum* gerechtfertigt ist, doch identifiziert Cesariano eine in dieser Figur enthaltene praktische Bedeutung mit der aus der Baugeometrie des Mittelalters bekannten Quadratur. Denn er schreibt, daß man durch eine solche *symmetriata quadratura* nicht nur eine jede gewünschte Figur konstruieren, sondern auch die Maße aller Plätze und Flächen jeglicher Ausdehnung bestimmen könne.27 Die praktische Bedeutung dieser Aussage ergibt sich aus den proportionalen Eigenschaften einander eingeschriebener Quadrate, die in einigen Illustrationen Cesarianos28 sowie in seinen Plänen des Mailänder Doms wiederzufinden sind. Wie eine flüchtige Zeichnung aus dem späten 14. Jahrhundert zeigt, ist dort, entsprechend den Gepflogenheiten mittelalterlicher Baugeometrie, neben der Triangulatur eben jene Proportionierungs- und Konstruktionsmethode angewandt worden, die auf dem Verhältnis der Quadratseite zu ihrer Diagonale beruht.29 Die auch in der Feldmesskunst benutzte und für das Aufmaß des Bauplatzes entscheidende Bedeutung der *symmetriata quadratura* erläutert Cesariano ausführlicher in seinem Kommentar zum neunten Buch Vitruvs (9.prooem.4-5.), nämlich anläßlich des Problems, wie ein quadratischer Platz von 100 Fuß Flächeninhalt zu verdoppeln sei. Cesariano sieht hier eine Aufgabe für die Feldmesskunst, die, basierend auf dem geometrischen Verhältnis des Quadrats zu seiner Diagonale, eine einfache Lösung anbietet. Denn da die Länge der Diagonale die Wurzel aus der doppelten Seitenlänge ihres Quadrats ist, ergibt sich das erwünschte Quadrat doppelten Flächeninhalts, wenn man jene Diagonale als dessen Seitenlänge annimmt.30 Dies in der sogenannten Quadratur enthaltene Prinzip der geometrischen Vermessung ebener Flächen verweist auch auf den legendären Ursprung der Geometrie, die in ihren Anfängen keine dem Papier verhaftete und der mathematischen Mystik verpflichtete Theorie war, sondern eine zur Land- und Erdvermessung gebrauchte Wissenschaft. In diesem Sinne erzählt Isidor die Geschichte von der Erfindung der Geometrie durch die alten Ägypter, die aufgrund der alljährlichen Nilüberschwemmung die Felder ständig neu vermessen mußten.31 Andere Autoren bestätigen den agrimensorischen Ursprung der Geometrie32, und auf

26 Ebd., fol.49v; vgl. KRINSKY, Cesariano’s Vitruvius, S.17-18.
27 CESARIANO, Vitruvio, fol.49v.
28 Ebd., fols.25v, 63v, 105v, 144v.
30 CESARIANO, Vitruvio, fols.143v-145v.
deren Anschauungen bezieht sich auch Cesarianos Begriff der anthropomorph begründeten Weltvermessung.33

Das der Flächenbestimmung dienende Prinzip der \textit{symmetriata quadratura} ist auch in der Illustration zum \textit{homo ad circulum} veranschaulicht, doch hier unter Einbeziehung des Kreises, der das Verhältnis zwischen umschreibenden und umschriebenem Quadrat konstituiert. An dieser Stelle verdeutlicht der Kommentar, daß die zur Bestimmung von Flächen gebrauchte Quadratur nicht nur eine geometrische Konstruktionsmethode, sondern auch mit Maß (symmetros) vorgenommen ist. Die Symmetrie, auf der sowohl die \textit{symmetriata quadratura} im besonderen als auch die Proportionierung der Gebäude im allgemeinen basiert, faßt Cesariano in Anlehnung an ihre Euklidische Definition auf als »Messung mit gleichmäßigem Maß, zahlenmäßig unterschieden nach verschiedener Quantität und verschiedenen Teilchen.«34 Sie liege der gesamten Quantität sowohl kalkulierbarer und linearer Figuren als auch jener von zweidimensionalen Dingen zugrunde. Ihre Anwendung füße auf der Arithmetik und auf den Regeln der göttlichen Proportionen, über die Luca Pacioli und Albert von Sachsen geschildert hätten. Die Ratio dieser Symmetrie ergebese sich aus der berechenbaren Teilbarkeit des Ganzen und der damit erzielten Kalkulierbarkeit seiner Teile, und ihr so konstituierter Berechnungsmodus erstrecke sich sowohl auf Gebiete kleiner Kalkulation - etwa auf Maße und Gewichte in der Medizin - als auch auf die Vermessung linearer und zeitlicher Dimensionen in Astrologie und Astronomie. Andere Anwendungsgebiete seien Handel, Landvermessung und schließlich, auf subtilste Weise, die Architektur:

Und so tauchen unzählige andere symmetrische Rationes auf, nicht nur im Handel, sondern auch in der Landvermessung, und am feinsten sind jene in der Architektur. Zur Kenntnis und Bestimmung der Symmetrie benutzt man einen Maßstab, einen hölzernen Stab, den die Architekten gebrauchen und eine Elle nennen. Dieser ist nach dem zweiten Glied des Duums eines wohlproportionierten Menschen in 12 Teile unterteilt [...].35

Cesariano beschreibt dann andere und größere Maßeinheiten wie die \textit{pertica} von 6 Fuß Länge oder das \textit{iugerum}, die von den Landvermessern verwendet würden. Doch seien diese Maße und Instrumente mit denen der Architektur prinzipiell identisch, denn alle gingen auf dasselbe anthropomorphe Prinzip zurück. Schließlich könne man mit ihnen sogar die ganze Welt vermessen, und obwohl größere Dimensionen wie das \textit{iugerum} keine direkte Verbindung mehr zum menschlichen Körper hätten, basiere ihr Gebrauch doch auf anthropomorphe entwickelten kleineren Maßen wie Zoll, Fuß oder Elle.36 Der menschliche Körper enthält damit das für die Vermessung von Welt und Architektur notwendige Prinzip sowie dessen Maße:

33 CESARIANO, Vitruvio, fol.50v (zit. unten, Anm. 37).

34 [...], proportioinalem commensurazione distincta numerabilme[n]te in diuserc quantita & particule [...]. Ebd., fol.48v; vgl. EUKLID, Elementa 10.1.

35 & cosi infinita altre ratione symmetriate non solo in le cose de mercantie accadono ma etiam de le agrimenso & più sublime sono quelle della Architettura: a sapere distinguere la symmetria: come si usa sopra una regula seu uno bacculo ligneo diusio come li nostri Architechi usano che dicemo uno brazo: quale diusio per il secondo nodo del digito polce de la mano de uno ben portionato homo [...]. CESARIANO, Vitruvio, fol.48v; vgl. hierzu auch G. SOERGEL, Untersuchungen über den theoretischen Architektenwurf von 1450 bis 1550 in Italien, Phil. Diss, Köln 1958, S.54-57.

36 CESARIANO, Vitruvio, fol.48v und 144.
Diese [die Maße] manifestieren sich leicht fasslich in den bereits erwähnten Rationes [...] und in der oben gegebenen Figur des menschlichen Körpers, durch dessen symmetrische Glieder man, wie wir gesagt haben, alle Dinge, die in der Welt sind, vermessen kann.37

37 queste se manifestano facilmente per le ratione gia alias supra dicte [...] Et in la supra data figura del corpo humano: per li quali symmetriati membri si po ut diximus sapere co[m]me- surare tute le cose che sono nel mundo. Ebd., fol.50y.
38 Ebd., fol.143v-144r; vgl. ISIDOR VON SEVILLA, Etymologiarum libri XX, 15.15.1-7., PL82, Sp.555-556.
39 PACIOLI, Summa, Epistola, fol.2r-3r und fol.68r-v (zit. Kap. VII).
40 PACIOLI, De divina proportione, S.106-107.
metaphysischen Implikationen einer von der göttlichen Proportion durchdrungenen Theorie für seine künstlerischen Anschauungen wirksam werden zu lassen. Zwar erkennt er das Walten göttlicher Prinzipien in der Kunst an, doch die göttliche Proportion selbst identifiziert er vergleichsweise bescheiden mit der alltäglichen Dreisatzrechnung.

Cesariano erläutert die Bedeutung anthropomorpher Metrologie nicht nur im Rahmen kosmographisch verstandener Feldmeßkunst und bezüglich ihres in der Architektur grundsätzlich notwendigen Maßes; vielmehr entwickelt er gleichzeitig deren praktische Relevanz für den Bauprozess selbst, nämlich für die Bestimmung des Bauplatzes und für die Errichtung des Gebäudes:

Aber wenn nun alle in der Welt enthaltenen Vermessungen der Dinge von einem wohlgestalteten menschlichen Körper kommen können, so hat Vitruv mit dieser Anschauung nicht nur die Vermessung zur Formung des menschlichen Körpers zeigen wollen, sondern daß man durch ihn auch die Symmetrien zur Vermessung der erwähnten Landflächen ausführen kann, damit man auf solche Weise den Bauplatz (spazio di terreno) einzunehmen und das Gebäude zu errichten weiß.

Die anthropomorphe Metrologie also ist das übergeordnete Prinzip, das sich auf alle denkbaren Bereiche, speziell aber in der Architektur anwenden läßt. Diese Symmetrien, die in der Architektur den höchsten Grad an Subtilität erreichen, sind bei der Errichtung von Gotteshäusern in noch größerem Umfange zu beachten:

Von daher hat sich Vitruv bemüht, für die Heiligen Gebäude diese Symmetrie (wie sein Diskurs demonstriert) mehr offenzulegen als alle anderen behandelten Dinge der Architektur, und nach meinem Urteil erscheint es mir die viel einfachere Sache, die hauptsächlichen ausladenden Glieder (membri meniani) eines Ortes, einer Stadt oder einer ganzen großen Festung sowie anderer öffentlicher Gebäude (loci ciuili) zu umreißen und zu errichten, als ein Heiliges Gebäude mit den ihm zukommenden Gliedern - proportioniert und sorgfältig nach Maß vermessen (simmetriati) - gut zu erbauen. Und daher ist gründlich zu beachten (pernotare), was ich Dir im ersten Buch geschrieben habe.

An der diesbezüglichen Stelle im ersten Buch beschreibt Cesariano, wie aus dem maßstäblichen Entwurf das Gebäude auf dem Bauplatz aufgemessen wird: Ichnographia bedeutet nichts anderes als eine maßstäbliche (modulata) ebene Entwurfszeichnung, also ein - um die beabsichtigte Sache anzuzeigen - Riß, der mit Zirkel und Richtscheibe angefertigt ist und [sie umfaßt ebenfalls die Benutzung] des von Romulus besonders zur Markierung der Fundamente gebrauchten ehemaligen Krummstabs, wie Plutarch in der Vita Camillus schreibt. Daher verfertigen wir, bevor wir die Fundamente eines Gebäudes oder einer anderen geplanten Sache machen, eine kleine maßstäbliche (modulato) oder vermessene (commensurato) Zeichnung, die wir in der Sprache der Maler und Bildhauer Skizze nennen würden. Und so demonstrieren wir die Lage und das Fundament der geplanten

43 Vgl. CESARIANO, Vitruvio, fols.27-3 und passim.
44 la regula magiore seu de le tre cose. Ebd., fol.48.
44 Ma cum siano tute le commensuratione de le cose del mondo comprehense potere peruenire da uno corpo humano bene affigurato: perbo Vitruvio per la praeente lecione ne ha uoluto: non solum ostenderne le commensuratione de forme uno corpo humano, ma etiam per epso potere performare le symmetrie per commensurare le praeiece superficie terrestre: Acio si sapia in qual modo occupare uno spacio di terreno: & in epso fare uno acdificio. Ebd., fol.48.
Sache sowohl mithilfe des Entwurfs als auch durch sein Aufmessen (o per Arche-
tipale uel murale effecto) [auf dem Bauplatz].

In den dann folgenden Ausführungen erläutert Cesariano sowohl die
gesetzmäßig vorgeschriebene Auslegung der Baulichkeiten hinsichtlich ihres
Abstandes (ambitus) zu den Nachbargebäuden als auch die für die korrekte
Aufmessen von Bauplatz und Bau notwendige Errichtung eines Schnurgerüstes.
Hierzu werden die Ecken mit hölzernen Pflocken und die Gebäudefluchten mit
Richtschnüren (lineae di filo) markiert; die genaue Ausführung des Aufmaßes
gewährleisten Lot (perpendicularus), Setzwage (librattione) und Winkelmaß
(norma).

Das Aufmessen eines Gebäudes auf dem Bauplatz ist durch archäologische
Ausgrabungen, durch mittelalterliche und neuzzeitliche Quellen belegt und auch
aus der heutigen Baupraxis bekannt. Cesarianos Verbindung dieses Vorgangs
mit seiner Erläuterung der Vitruvischen Proportionsfigur ergibt sich zunächst
aus dem einfachen Umstand, daß diese Figur dieselben anthropomorphen
Maaßeinheiten repräsentiert, die auch in der Architektur Anwendung finden. Die
hierbei vorgenommene maßstäbliche Übertragung der Dimensionen von der
Zeichnung auf den Bauplatz geschieht allerdings nicht nur durch das Maß
selbst, sondern auch, wie etwa aus anderen Quellen und aus der
mittelalterlichen Baupraxis überliefert ist, durch die Transferierung der Winkel
mithilfe von Winkelinstrumenten, sowie durch die naturmaßstäbliche
Wiederholung der bereits im Entwurf vorgenommenen geometrischen
Konstruktionen auf dem Bauplatz.

Denselben Sachverhalt meint auch Cesariano, wenn er das Fundament o per Archetipale uel murale effecto
demonstriert wissen will. Dabei besteht insofern ein direktes geometrisches
Verhältnis zwischen Entwurf und Ausführung, als das zunächst im Plan mit
Zirkel und Richtscheit konstruierte Grundrisschema auf dem Bauplatz ebenso
geometrisch mit Schnurzirkel, Richtschnur, Richtscheit, Winkelmaß und
Setzwage entwickelt werden kann. Daher bringt Cesariano diese Instrumente
mit der von ihm erläuterten geometrischen Funktion der Vitruvischen Proport-
ionsfigur in Verbindung, und er kommentiert damit das grundlegende architek-
tonische Prinzip der Geometrie, das sowohl für die Konstruktion des
maßstäblichen Entwurfs in der Zeichnung als auch für deren Ausführung auf
dem Bauplatz unerläßlich ist. Gleichzeitig enthält dieses geometrische Prinzip
als symmetriata quadratura die in der Metrologie definierten Dimensionen,
 denn die Quadratur kann mit den in der Vitruvischen Proportionsfigur

46 Adunche Ichnographia non ul diri altro che una modulata designatione superficiale como e a
dire Circigatura facita con il circino & regula per indicare la cosa fienda. si come etiam con lo
secolo luito incolumabile che uso Romulo praecepue in indicare le fundatione de li aedifici; si
come dice Plutarco in uit Camilli. Cosi adnucha prima faciamo quando che li fundamenti de
qualche aedifici uel alta cosa che uolemo operare: primo facciamo uno pocho de uno modulato
seu co[m]ensurato disegno quale dicem un schildo in vocabulo pictorico seu sculpturico. &
cosi dimonstrano la situazione seu fundatione de la cosa fienda. o per Archetipale uel murale
effecto. Ebd., fol.133; vgl. PLUTARCH, Vitae parallelae. Vita Camilli 32.4-5.
48 Vgl. BOOZ, Baumeister der Götik, ebd.; GABRIELLO BUSCA, L'architettura militare,
Mailand 1619, S.91-93; GIROLAMO CATANEIO, Dell'arte militare libri tre, Brescia 1571,
fol.15v-23r; CHRISTOFF WEIGEL, Abbildung der Gemein-Nutzlichen Haupt-Staende,
Regensburg 1698, Abbildung vor S.29; weitere Quellen bei K. VELTMAN, Military Surveying
and Topography: The Practical Dimension of Renaissance Linear Perspective (Publicaiones do
Centro de Estudos de Cartografia Antiga CXXIX), in: Revista da Universidade de Coimbra
27.1979, S.263-279.
ausgedrückten und in der kosmographischen Landvermessung gebrauchten anthropomorphen Standardmaßen vermessen (symmetriata) werden.

Aufgrund seiner agrimensorialen Qualifikationen war Cesariano für jene Art von vermessungstechnischen Aufgaben prädestiniert, deren Ausführung Michelangelo weit von sich gewiesen hätte. Das unterschiedlich starke Engagement in solchen Aufgaben sagt also etwas über den Rang einer am Bau beschäftigten Person aus, und es demonstriert sowohl die für ein archi-

51 CESARIANO, Vitruvio, fol.18°.
52 COLUMELLA, De re rustica 5.1.2-3.
53 Vgl. FABRICIUS, Mensor, in: Paulys Real-Encyclopaedie der Classischen Altertumswissen-

54 FILARETE, Trattato, Bd.1., S.148.
55 GEMMA FRISIUS, De radio astronomico & geometrico liber, Antwerpen 1545, fol.20v.-22v.
56 MICHELANGIOLO BUONAROTTI, Lettere, a cura di E. N. Girardi, Florenz 1976, S.229, Nr.309.
57 Vgl. C. BARONI, Documenti per la storia dell’ architettura a Milano nel rinascimento e nel barocco, Bd.1, Florenz 1940, S.110-111.
58 WEIGEL, Abbildung der Hauptstände, S.29-33.

Cesariano befand sich in einer ähnlichen Situation wie Fancelli, d.h. er versah die Aufgaben eines in bestimmten Gebieten geschulten Handwerkers oder Künstlers, und er begab sich an jene Orte, an denen seine speziellen Fähigkeiten, etwa die agrimensorischer oder dekorativer Art, mit dem entsprechenden Bedarf zusammentrafen. Diese Fähigkeiten waren nicht nur agrimensorischer Natur, sondern allgemeiner, technisch-handwerklicher Art,

60 Vgl. J. S. ACKERMAN, Architectural Practice in the Italian Renaissance, in: Journal of the

61 Ein besonderer Fall scheint derjenigen Filarete zu sein, der in seiner Stellung als Höfling schon sehr früh das Idealbild eines Architekten entwirft; vgl. Kap. IV.3.

66 Vgl. KRINSKY, Cesariano’s Vitruvius, S.9.
69 CESARIANO, Vitruvio, fol.13V.

In der Tat finden sich im Comaker Vitruv Hinweise darauf, daß Cesariano mit dem Begriff architetto weniger die Rolle des schöpferischen Entwerfers charakterisierte, als vielmehr eine kommunikative Funktion bezeichnete, deren Medien Modelle und Risse waren. Er schreibt, da die sowohl praktisch als auch wissenschaftlich gebildeten Architekten, die gemäß Aristoteles von den Handwerkern zu unterscheiden seien, die göttliche Ordnung der Natur nachzuahmen trachteten, komme ihnen der Status von Halbgöttern zu. Ausgenommen von dieser göttlichen Zunft sind natürlich die Bauarbeiter, operarii und murarii, die von demjenigen, der sich Architekt nennen darf, beaufsichtigt werden. Denn das aus dem Griechischen stammende Wort architectus meine »Aufseher oder Leiter der Bauhandwerker und Oberaufseher der Architektur und auch der [Gebäude-] Erhaltung«. Neben den die Aufsicht der Handwerker und die Erhaltung der Gebäude (conseruatio) betreffenden Funktionen hat der ausführende Architekt (agente Architecto) auch die Rolle des »Bedeuters« (quello che significa), der mithilfe des »Bedeuteten« (quello che e significato), nämlich mit den Architekturzeichnungen ichnographia und orthographia, den Gang des Bauvorhabens zu demonstrieren versteht (sapere demonstrare). Der Architekt erfüllt also eine kommunikative Funktion, die auf einer der Grammatik vergleichbaren regelnden Übereinkunft beruht; d.h. er repräsentiert mit zeichnerischen Mitteln (formatione grammaticae id est pictorice affigurazione) und gemäß ihren konventionellen Regeln (ordine grammaticale) die den Prozeß des Bauvorhabens betreffenden Dinge. Dieses scheinbar sehr weitgefaßte Verständnis einer gramatisch fixierten Vermittlung von architektonischen Vorstellungen rechtfertigt Cesariano auf etymologischem Wege. Das griechische γράμμα bezeichnet neben dem Buchstaben auch eine eingeritzte Figur schlechthin, und die von Cesariano anlässlich des euthygramnum erläuterte grammme faßt er schlicht als Linie (linea) auf. Die Linie wiederum ist konstituierender Bestandteil der vom Architekten bedeuteten (significato) Architekturzeichnung, deren kommunikative Funktion er zu gewährleisten hat. Cesariano sieht die Rolle des Architekten also vor allem in der zeichnerischen Fixierung architektonischer Vorstellungen, was

71 FILARETE, Trattato, Bd.1, S.240-241.
72 CESARIANO, Vitruvio, fol.2r; vgl. ARISTOTELES, Metaphysica 1.1. (981a-b).
73 princeps seu magister fabror[um] ac principalis architecturae: uel co[n]seruatio[n]is. CESARIANO, Vitruvio, fol.3r.
74 Ebd.
75 Vgl. ebd., fol.48v.
76 Ebd., fol.4v.

1. Eine klerikale Karriere

1 Vgl. PHILIBERT DE LA MARE, De vita, moribus et scriptis Guillelmi Philandri Castilionii [...] epistola, o.O. 1667, S.21-22.
2 GUILLAUME Philandrier, Castigationes atque annotationes pauculae in XII libros institutionum M. Fabii Quintiliani, Lyon 1535.
3 GUILLAUME Philandrier, Annotationes in Vitruvium Pollionem quas ad Franciscum regem P. P. ac bonarum litterarum assertorem, Lyon 1552.

2. Humanist und Antiquar

Die Bezeichnung Humanist, verstanden als eine Prägung des 18. und 19. Jahrhunderts, ist ein Begriff, der mehr oder weniger genau die literarische, philologische, archäologische oder allgemein antiquarische Tätigkeit an der Antike interessierter und gelehrter Männer bezeichnet. Ihre gesellschaftliche und

4 DE LA MARE, Vita Philandri, S.21-22 und S.41-42.
5 GUILLAUME Philandrier, M. Vitruvii Pollionis de architectura libri decem, ad Caesarem Augustum, omnibus omnium editionibus longe emendationes, collatis veteribus exemplis, Lyon 1586, S.102.

Philandrier beginnt seine Anmerkungen zu Vitruv mit einem im 15. und 16. Jahrhundert nicht immer unangefochtenen Beweis seiner Zugehörigkeit zur Gilde der Cicero imitierenden Humanisten:

Wir lesen, unbesiegbart der König, daß es eine Zeit gab, als die Menschen zerstreut und verteilte wie Tiere in Bergen und Wäldern herumschweiften und mit viehischer Nahrung ihr Leben fristeten. Noch nicht hatten sie, durch den Rat der klugen oder die Rede wortgewander Männer eingenommen und aus ihrem wilden und unzivilisierten Dasein zu unserer menschlichen und bürgerlichen Lebensweise geführt, sich mit Verschanzungen und Mauern umgeben. Und im Anfang, als sie dies taten, um sich und die Ihren vor widrigen Stürmen zu schützen und sichere Zuflucht vor der Sonnenhitze zu haben, da begannen einige, aus Laubwerk Abdeckungen zu verfertigen, andere begannen, Höhlen zu graben; diejenigen aber, die mehr Verstand hatten, begannen, nachdem sie Gabelholzer aufgerichtet und

Strauchwerk [damit] verflochten hatten, mit Lehmmauernwände dazwischen einfügen. Das sind die ersten Anfänge der Baukunst gewesen.\footnote{Fuisse tempus, cum in montibus ac syluis dispersi dissipati[ue] homines bestiarum more vagarentur, & sibi victa ferino vitam propagaret, Rex ineptiss[ime], legimus: nondum i1 prudentium consiliijs, aut dissertorum oratione deliniti, a fera agrestis[ue] vita ad humanum hunc ciuilem[ue] cultum deducti, se oppidis moenibus[ue] sepserant. \textit{Et principio quidem, cum id tanta2 agerent, vt se susq[ue] ab adversis tempestatis3 tuerentur, vt contra solis ardores tuta diffugia haberent, coeperunt aliqui e frondibus tecta facere, speluncas alij sodere: qui ingenio praebantabat, furcis erectis, & intertextis virgulis luto parietes inducere. Ea fueruntaedificatoriae rei incunabula. Philandrier, Vitruvii de architectura, 1586, c.a24.}

Diese Textstelle, mit der die Widmung des Werkes an Franz I. beginnt, ist eine ciceronisch phrasierte Version der von Vitruv selbst (2.1.1-3.) beschriebenen Entstehung der Architektur. Die von Philandrier in seine eigene Formulierung gestreuten Satzfragmente aus Ciceros \textit{De oratore} und \textit{De inventione} sind zwar aus ihrem ursprünglichen Sinnzusammenhang gerissen, doch sie waren prominent genug, um von jedem gelehrten Leser des 16. Jahrhunderts identifiziert werden zu können.\footnote{CICERO, \textit{De oratore} 1.8.33, 1.9.36; \textit{De inventione} 1.2.}

In den \textit{Annotationes} selbst versucht ihr Autor, das ciceronisch und damit humanistisch ambitionierte Anspruchsniveau zu halten. Im Sinne dieser humanistischen Ambitionen verweist er auf seine in Italien erworbenen archäologischen Kenntnisse\footnote{Philandrier, Vitruvii de architectura, 1586, z.B. c.3a5, S.7, 15, 83, 84, 170.}, und er macht mehrfach klar, neben gedruckten Vitruvausgaben auch Handschriften zur Textverbesserung herangezogen zu haben.\footnote{Ebd., z. B. S.5, 8, 9, 43, 116.}

3. Philandrier und Vitruvs Proportionsfigur

Im Gegensatz zu Cesarianos baupraktisch bestimmten Interpretationen beschränkt Philandrier sich in der Kommentierung der Proportionsfigur Vitruvs auf seine Punkt für Punkt vorgehende antiquarische und größtenteils philologische Methodik. Daher sieht er nicht, wie vor ihm Cesariano, die einzelnen Aspekte der Proportionsfigur im Zusammenhang einer vor allem meßtechnisch bestimmten Baupraxis; vielmehr kommentiert er die verschiedenen Gesichtspunkte in der Reihenfolge ihres Auftretens und erhält damit vereinzelte Angaben, deren Heterogenität durch ein allgemeines Interesse an der Antike sowie durch die philologische Methodik zusammengehalten wird. Die daraus resultierende Vereinzelung zeigt sich besonders deutlich, wenn er, zunächst Vitruv folgend, die \textit{symmetria} als eine Maßbestimmung hinsichtlich von Länge, Breite und Höhe eines Gebäudes erklärt, dann aber in seiner ausführlichen Erläuterung der anthropomorphen Maßeinheiten selbst nicht auf deren Bedeutung für diese Symmetrie eingeh. Stattdessen diskutiert er ausführlich diejenigen griechischen und lateinischen Autoren, die zu einem Verständnis der antiken Maßeinheiten und ihrer korrekten Bezeichnung beitragen können. Diese Art meteologischer Diskussion ist nicht nur typisch für Philandriers Arbeitsweise, einzelne Probleme des Textes individuell zu behandeln, sondern auch aufschlußreich hinsichtlich seiner Interessen. Denn er analysiert die anthropomorphen Maße nicht, wie man es von einem schwerpunktmäßig an Architektur interessierten Schriftsteller erwartet würde, im Kontext eines anthropomorphen Verständnisses von Architektur; vielmehr gilt sein Interesse...}
der antiquarischen Rekonstruktion der antiken Maßverhältnisse und der Diskussion ihrer korrekten Bezeichnung. Er konzentriert sich also nicht auf die Verwendung von Maßverhältnissen, sondern auf die antiquarisch motivierte Erklärung ihrer historischen Herkunft aus der Antike.

Philandriers Auseinandersetzung mit den von Vitruv angegebenen menschlichen Proportionen selbst übergeht deren metrologischen Ursprung und ist von der Unstimmigkeit in Vitruvs Kanon geprägt (vgl. Kap. II.2). Als Alternative zu den unstimmig erscheinenden Proportionen schlägt Philandrier die Angaben Pomponius Gaucicus' vor, zitiert dann aber einen von jenen leicht verschiedenen Kanon:

Es fehlen auch nicht solche, die (wofür sie Varro als Gewährsmann loben) den Körper des Menschen in 9 1/3 Teile teilen und einen Teil vom Kinn bis zu den Haarwurzeln rechnen, zwei von der oberen Brust bis zum Nabel, von hier bis zu den Geschlechtsorganen einen, von hier entlang dem Oberschenkel bis zum Knie zwei und ab dem Knie entlang dem Schienbein bis zu den Knöcheln zwei. Ein Drittel wiederum rechnen sie vom Haaransatz bis zum Scheitel, ebensoviel vom Kinn bis auf die obere Brust. Der Kniescheibe (epigonatidi) oder Kniekappe (mylæ), die das Gelenk zwischen Schienbein und Oberschenkel bedeckt, schreiben sie ebensoviel zu, und ebensoviel auch vom Knöchel bis zur Fußsohle, so daß es vom Kinn bis zum Scheitel 1/7 der Gesamtkörperlänge ist, von der Höhe der Brust bis zu den Haarwurzeln ebensoviel und bis zum Scheitel ein wenig mehr als 1/6.15

15 Non defuerunt qui in nouem partes & vnius tertiam hominis corpus partientes (cuius rei laudant autorem Varroenn) constituant partiem vnam a mento ad radices imas capillorum, duas a summno pectore ad vmbilicum, ab hoc ad genitalia vnam, ab istis ad femora ad genua duas, infra genu per tibias ad malleolos duas. Rursus vnius tertiam a radicibus capillorum ad verticem statuant, tantundem a mento ad summum pectus, epigonatidi siue mylæ, quae iuncturam femoris & tibiae operit, tantundem tribuant, a malleolis ad plantam pedis tantundem, vt sit a mento ad verticem septima totius corporis, a summno pectore ad imas radices capillorum tantundem, ad summum verticem paulum supra sextam. Ebd., S.83.

17 DIEGO DE SAGREDO, Medidas del romano, Toledo 1526 (Nachdruck, Valencia 1976), c Avf-V.

18 DIEGO DE SAGREDO, Raison d'architecture, Paris 1539, c.6f.-7y.

19 CENNINO CENNINI, Il libro dell' arte, hrsg. v. F. Brunello und L. Magagnato, Vicenza 1971, S.81-83 (Kap.70).

20 GIBERTI, Commentarii, Bd.1, S.229 (d.i. fol.63v), Bd.2, S.34-35 (vgl. Kap. IV.2).

23 Philandrier, Vitruvii de architectura, 1586, S.83; vgl. Kap. II.2.
25 VARRO, De lingua latina 7.17.
26 ANDREAS VESALIUS, De humani corporis fabrica libri septem, Basel 1543, fols. 389 und 595.

Philandriers Kommentar zu Vitruvs Figur, die den Gebrauch des Zirkels oder die Bedeutung des Kreises in der Architektur anzudeuten versucht, gibt keinen Aufschluß darüber, daß ihr Autor mit seinen Anmerkungen praktisch relevante oder ästhetisch signifikante Vorstellungen verband. Vielmehr demonstriert der Kommentator eine bestimmte, hier mit den Begriffen humanistisch oder antiquarisch umschriebene Methodik, die darin bestand, ein allgemeines Interesse an der Antike zu vertiefen. Vitruvs sogenanntem *homo ad quadratum*, der nach dem Winkelmaß quadratischen Figur, gesteht er andererseits insofern eine ästhetische Bedeutung zu, als er im Anschluß an seine Diskussion der menschlichen Proportionen bemerkt: «es ist dafür zu sorgen, daß die ausgestreckten Hände genau die Länge des Körpers erreichen.»

Zumindest diese Angabe scheint für ihn einen ästhetischen Wert gehabt zu haben, denn er beschließt mit ihr seine Beobachtung der Antiken in Rom, deren Maßverhältnisse nicht immer mit den von Vitruv gegebenen Proportionen übereinstimmten. Doch später bezweifelt er die allgemeine Gültigkeit der den *homo ad quadratum* betreffenden Angaben:

Und Plinius (Buch 8, Kapitel 17) sowie Solinus (Kapitel 5) sind die Gewährsmänner dafür, daß die Länge des Menschen von der Fußsohle bis zum Scheitel gleich derjenigen zwischen den Mittelfingern der ausgebreiteten Hände ist. Auch wir haben dies einmal erprobt; dennoch soll man dies nicht ohne weiteres für wahr halten, da ja Maß und Proportion der Glieder nicht aller Körper rein und tauglich zur allgemeinen Zusammensetzung sind.

Neben Philandriers Zögern hinsichtlich eines ästhetischen Wertes des *homo ad quadratum* ist auch seine Haltung gegenüber dem genannten Solinus bemerkenswert, dem einzigen antiken Autor, der feststellt, daß ein Mensch, der mit ausgestreckten Armen seine Körperhöhe anzeigt, den Mikrokosmos

27 Ovid, Metamorphosen 8.247-249.

29 Philandrier, Vitruvi de architectura, 1586, S.84.

30 [...] curandum est, vt expressae manus ipsam corporis longiudine[m] acquent. Ebd., S.83.

4. Der Kleriker als Architekt

32 SOLINUS, Collectanea 1.93-94.
34 Vgl. DE LA MARE, Vita Philandri, S.52-54.
35 Ebd.
36 SCÉVOLE DE SAINT-MARTHE, Gallorum doctrina illustrium [...] elogia, Poitiers 1602, S.132-133.
methodische Gründlichkeit und fachliche Gelehrtheit der Annotationes oder sie verkünden die außergewöhnliche Kenntnis, die Philandrier in allen Wissenschaften, besonders aber in der Mathematik und in der römischen Antike besessen habe. Die Hochschätzung der Annotationes und ihres Autors beruhte also nicht auf deren architektonischen Aspekten, sondern auf Philandriers allgemeiner Gelehrtheit und seiner methodischen Gründlichkeit im Umgang mit der Antike. Wenn das Lob sich schließlich doch auf den Gegenstand der Annotationes bezog, dann galt das Interesse nur insofern der Architektur, als sie ein Teil der römischen Antike war. Philandrier hätte diese Aufnahme seines Vir- trukkommentars wahrscheinlich begrüßt, denn die von ihm angewandte und oben als humanistisch oder antiquarisch bezeichnete Vorgehensweise offebarte ein Interesse am Allgemeinen, an der Antike, und der Kommentator diskutierte dieses Interesse am Beispiel des Speziellen, nämlich in der Aus- einandersetzung mit Architektur.

Philandriers Rolle in den unter dem Patronat George d'Armagnacs fortschrei- tenden und begonnenen Bauvorhaben läßt sich aus den Angaben seines Biographen Philibert de la Mare zumindest teilweise rekonstruieren. 1533, also zwei Jahre nach seinem Eintritt in das Domkapitel der Kathedrale (1531), avancierte er zum persönlichen Sekretär des später zum Kardinal gekürten Bischofs. Noch vor der Abreise nach Venedig 1536 benötigte dieser für die Arbeiten an der unvollendeten Kathedrale zu Rodez und für andere Projekte einen zuverlässigen Mann mit von de la Mare nicht weiter spezifizierten Qualifikationen. Der Biograph betont aber, daß der Sekretär des Bischofs zwar in den artes liberales bewandert gewesen sei, doch zu jenem Zeitpunkt noch keine architektonische Erfahrung besessen habe. Trotzdem wurde Philandrier von seinem Mäzen dazu angetrieben (impellertur), es zu versuchen (periculum facere) und sich in die Materie einzuwirken. So übernahm er die cura operum der Kathedrale, und die eingangs gelegenen Gewölbe wurden unter seiner Aufsicht und durch seine Anstregung ausgeführt (eius ductu & industria perducti sunt).38 Da Philandrier zu diesem Zeitpunkt keine architektonischen Erfahrungen hatte, dürfte seine Funktion die eines Aufsehers gewesen sein, der vor allem die administrative Seite des komplexen Bauvorhabens betreute. Diesen Schluß bestätigen auch Dokumente, in denen jene Personen erwähnt sind, die die im Zusammenhang mit Philandrier erwähnten Bauten tatsächlich ausführten. Und zwar ist der Steinmetz Antoine Salvanh von 1513 bis 1552 als Werkmeister an der Bauhütte der Kathedrale zu Rodez (magister operarum fabricae ecclesiae Rutenhensis) nachgewiesen.39 Dessen Sohn, ausgebildet in der Werkstatt seines Vaters, der Steinmetz (massonnier) Jean Salvanh, übernimmt diesen Posten 1552 mit dem gleichen Titel (mestre de l’obra de la cathédrale) und wird in anderen Quellen auch als Verantwortlicher für die Erhaltung des Bischofspalasts (surintendent des reparations de Gages) genannt. Gleichzeitig beschäftigt ihn die Stadt Rodez als Meister der Steinmetzarbeiten (maistre des oeuvres de maconnerie), und ab 1560 wird er nicht nur zum ersten mal als architecteur erwähnt, sondern auch mit administrativen Aufgaben in Rodez betraut.40 Ähnlich wie im Italien des ausgehenden 15. und beginnenden

38 DE LA MARE, Vita Philandri, S.21-22.

42 Philandrier, Vitruvii de architectura, 1586, S.10.
43 Ebd., S.224-225.
44 Ebd., S.250.
45 Ebd., S.14.
46 Ebd., S.10.
Medien in einem auf verschiedenen organisatorischen Stufen ablaufenden Prozeß, der administrative, finanzielle, ästhetische und allgemein architektonische Entscheidungen umfaßte.

Aus den von Philandrier aller Wahrscheinlichkeit nach ausgeführten architektonischen Aufgaben folgt eine weitere Erklärung für seine Haltung gegenüber Proportionen im allgemeinen und Vitruvs Proportionsfiguren im besonderen. Philandriers architektonische Kompetenz entwickelte sich aus einem antiquarischen Interesse einerseits und zunächst administrativen Aufgaben andererseits. Diese Kombination liefert eine Begründung dafür, warum er die Proportionslehre nicht als ein abstraktes ästhetisches Konzept diskutierte und Vitruvs Proportionsfigur lediglich als einen Gegenstand antiquarischen Interesses begreift. Hieraus ergibt sich die Frage, ob für das Architekturverständnis der Renaissance in Frankreich ein antiquarischer oder ein proportionsästhetischer Standpunkt die größere Bedeutung gehabt hat.
XI. DANIELE BARBARO

In den folgenden Ausführungen wird versucht, Barbaros Verständnis der Vitruvischen Proportionsfigur in den Zusammenhang seiner kunsthistorischen Ansichten zu stellen. Philologische Gesichtspunkte der Vitruvausgabe Barbaros, die bereits an anderer Stelle Aufmerksamkeit gefunden haben, 6 werden hierbei übergangen, weil sie, anders als das in den Kommentaren Philandiers der Fall ist, keine wesentliche Bedeutung für Barbaros Kunsttheorie haben. Die folgende Erörterung dieser Theorie beruht auf der Prämisse, daß weder ihre theoretische Absicht noch ihr intellektueller Gehalt ohne Berücksichtigung der von Barbaro benutzten Quellen rekonstruiert werden kann. Die Rekonstruktion aus den Quellen ist hierbei ein Versuch, innerhalb der aus ihnen entwickelten Terminologie zu argumentieren, um so mit der Erörterung der Begriffe die mit ihnen bezeichnete Kunsttheorie zu verstehen. Hierbei werden terminologische Probleme, die sich aus dem Gebrauch verschiedener Sprachen ergeben, nicht eigens diskutiert; dasselbe gilt für die

4 DANIELE BARBARO, I dieci libri dell’architettura di M. Vitruvio, Venedig 1567.
5 DANIELE BARBARO, M. Vitruvii Pollionis de architectura libri decem, Venedig 1567.
angebotenen Übersetzungen, die immer auch als Interpretationen zu verstehen sind. Am Schluss des Kapitels steht der Versuch, Barbaros spezifisches Verständnis der Vitruvischen Proportionsfigur aus seiner Stellung als aristokratischer Förderer der Künste zu erklären.

1. Barbaros Kunsttheorie

Da die Ausübung von Kunst eine geistige Tätigkeit und die Architektur als Vorsteherin aller Künste (omnia artium princeps) eine auf Erkenntnis gerichtete Anlage (habitus, habitus) ist, erläutert Barbaro zunächst die verschiedenen Anlagen des Intellekts (intelletto). Deren gebe es drei, und im Gegensatz zu den beiden weniger brauchbaren Prinzipien, Meinung und Ignoranz, eigne dem Intellekt das Streben nach dem Wahren (vero). Die Philosophen, so fährt er fort, unterschieden das notwendig Wahrne (vero necessario) vom hinzutretend Wahren (vero contingente), und das notwendig

8 BARBARO, I dieci libri, 1567, c. a2.
9 Ebd., S.19.
10 Ebd., S.4.
11 Ebd., S.71.
12 [...] in chiacsuna scienza la diffinitione del soggetto, del qual si tratta, [...] contiene virtualmente le soluzioni di i dubij, le inuentioni de i secreti, & la ueritá delle cose in quella scienza contenute. Ebd., S.8.
13 BARBARO, Vitruvii de architectura, S.1.
Wahre, das auf dem wahren und bestimmten Urteil basiert, werde wiederum dreigeteilt, nämlich in die auf beweisbaren Schlüssen beruhende Wissenschaft (scienza), den auf Prinzipien beruhenden Intellekt (intelletto) und die Weisheit (sapienza). Allerdings gehörten die Grundlagen der Kunst nicht in die logischen Kategorien des notwendig Wahren, sondern, zusammen mit der Klugheit (prudenza), in diejenigen des hinzutretenden Wahren. Hierbei regle die Klugheit die menschlichen Tätigkeiten hinsichtlich der gesellschaftlichen Eintracht, während Kunst (arte) das regulierende Prinzip von Nützlichkeit und Klugheit sei.14

14 Ebd. und BARBARO, I dieci libri, 1567, S.3.
15 ARISTOTELES, Metaphysica 1.1. (981a); ders., Analytica posteriora 2.19 (100a).
16 ARISTOTELES, Ethica Nicomachea 6.2. (1139a 6-12).
necessario, die bei Aristoteles in dieser Form nicht auffaucht und von Thomas in seinem Kommentar zur Nicomachischen Ethik benutzt wurde.19

21 BARBARO, I dieci libri, 1567, S.37.
24 BARBARO, I dieci libri, 1567, S.9.
25 GALEN, Ars medica, Venedig 1544, S.1 und 3.
26 BARBARO, I dieci libri, 1567, S.8; vgl. GALEN, Ars medica, S.1 und dens., De historia philosophica liber spurius 3-4, Ed.Kühn, Bd.19, S.234-239.
27 BARBARO, I dieci libri, 1567, S.11.
28 Ebd., S.4, 7 und 97.
Damit verbindet Barbaro das aristotelische Prinzip verstandesmäßigen Hervorbringens und die demonstrative Methodik Galens mit der architekturtheoretischen Terminologie Vitruvs.

Barbaros Identifizierung einer im Verstand (mente) des Künstlers ansässigen *forma*, die die Materie formt, mit den sechs architektonischen Grundbegriffen Vitruvs, hat ihren theoretischen Ursprung in der Auffassung des Aristoteles, daß sowohl das Prinzip (ἀρχή) der Kunst (τέχνη, s.o.) als auch ihre wesenhafte Form (ἰδος) als das wesentliche Sein eines Dinges im Hervorbringenden angesiedelt ist. In diesem Sinne kann gemäß Aristoteles die Baukunst auf ebensolche Weise die wesenhafte Form (ἰδος) des Hauses sein wie auch die Medizin wesenhafte Form der Gesundheit.29 Das von Aristoteles übernommene und *forma* genannte Prinzip der wesenhaften Form definiert Barbaro als ein architektonisches Konzept, unter dem *forma* nicht als bestimmtes und imaginäres Abbild einer im zukünftigen Werk zu realisierenden Form verstanden wird, sondern als das Konzept selbst. Hieraus folgt für Barbaro schließlich die Möglichkeit, die Architektur als etwas im Verstande des Architekten prinzipiell Bestehendes aufzufassen, das erst in zweiter Linie als Produkt aus der Materie verstanden wird.30 Außerdem begründet das aus dem aristotelischen ἱδος abgeleitete Konzept der *forma* auch, wie diese mit den sechs architektonischen Grundbegriffen Vitruvs identifiziert werden kann, denn sie ist nicht eine bestimmte Form im modernen Wortsinne, sondern Ausdruck eines regulierenden und operativen Prinzips, das der Hervorbringung konkreter architektonischer Formen vorangeht.

Erst nach der aus dem aristotelischen ἱδος abgeleiteten *forma* gelangt Barbaro schließlich zu den konkreten Formen, die gestaltete Wirklichkeit in Form geformter Materie sein können. Diese Form, die als *forma sensibile & naturale* im theoretischen Sinne von der Natur geformte Materie ist, wird in Gestalt von Baumaterialien wie Holz, Metall und Stein von jener Idee (idea) und jener Vorstellung (segno) geformt, die sich im Verstand des Künstlers befinden.31 Die geformte Materie unterliegt also der Komposition, Organisation und individuellen Gestaltung durch die *idea* oder den *segno*. Diese Ideen sind mit denen identisch, die auch in der wirkenden Kraft (agente) der nachzuahmenden Natur existieren. Barbaros Bezugnahme auf die *idea*, allem Anschein nach in Übereinstimmung mit der aristotelischen Unterscheidung zwischen Idee (ἰδέα) und wesenhafter Form (ἰδος), steht in der Tradition jener Autoren, die wie Cicero und Seneca die platonische Ideenlehre im Zusammenhang kunsttheoretischer Diskussionen erörtern. Cicero spricht von den Ideen der Schönheit (species pulchritudinis), von den Ideen der Dinge (formas rerum)32 sowie von Platons Ideen (ἰδεῖς)33, die im Verstand (in mente) des Künstlers ideale Muster für deren künstlerische Schöpfungen liefern. Seneca definiert die *idea* als unsterbliches Muster (exemplar aeternum), das der Künstler erwägt und das neben der Materie, dem Hervorbringenden (opifex), der wesenhaften Form (*forma, idos*) und der Absicht (propositum) die fünfte

29 ARISTOTELES, Metaphysica 7.7. (1032b).
30 BARBARO, I dieci libri, 1567, S.71.
31 Ebd., S.38.
32 CICERO, Orator 2.8-10.

34 SENECA, Epistulae 53.18-19. und 65.3-9; vgl. G. SCARPATI, La lettera 65 di Seneca, Brescia 1965, S.92-95.

36 TIBERIO BACCILIERI. Mir ist dieser Autor nur aus seiner Nennung bei Niccolo Franco (vgl. die nächste Anm., dort c.88-89.) bekannt. Es handelt sich wahrscheinlich um TIBERIO BACCILIERI, Lectura in tres libros de anima et in tractatum Averrois de substantia [...], Pavia 1508.

37 NICCOLO FRANCO, Dialogo dove si ragiona delle bellezze, Venedig 1542, c.88.

39 Vgl. ebd., pass.

41 BARBARO, I dieci libri, 1567, S.34.

42 Ebd., S.9-10.
2. Barbaros Proportionstheorie

Barbaros Proportionstheorie bezieht sich zum einen auf Vitruvs Angaben zu den Maßverhältnissen des menschlichen Körpers und zum anderen auf allgemeinere, musiktheoretisch ausgedrückte Proportionsvorstellungen. In diesen Ausführungen, die der eigentlichen Auseinandersetzung mit Vitruv vorangestellt sind und mit dessen an Aristoxenos orientierten Beschreibung der musikalischen Harmonien wenig gemein haben, ist Barbaro sowohl der traditionellen, durch Boethius, Augustinus und Isidor vertretenen als auch der neueren durch Franchino Gaffori (oder Gafuri) repräsentierten Musiktheorie verpflichtet.43 Barbaros allgemeinere Angaben zu den Proportionen - soweit sie nicht Boethius verpflichtet sind - gehen möglicherweise auf jene Schriften Al-Kindis zurück, in denen die korrekte Mischung von Arzneien beschrieben wird.44 Ein Charakteristikum der ausführlich bei Boethius formulierten traditionellen und platonisch-pythagoräisch verstandenen Musiktheorie ist ihr Harmoniesystem. Gemäß diesem System können musikalische Konsonanzen nicht nur in den Zahlen des pythagoräischen Tetraktys (1:2:3:4)45 ausgedrückt, sondern auch in Längendimensionen gemessen werden. Dies wird am Beispiel von Saiteninstrumenten anschaulich, wo die Tonhöhe eines Klanges im umgekehrten Verhältnis zur Länge der Saite steht; d.h. je länger die Seite, desto tiefer der Ton. Somit lassen sich traditionell als schön empfundene Konsonanzen wie Oktave, Quinte und Quarte in Längendimensionen und damit als Proportionen von 2:1, 3:2 sowie 4:3 ausdrücken. Dabei gehen die Bezeichnungen der einzelnen Konsonanzen auf den Modus ihrer numerischen Definition zurück, etwa wenn die Quarte (die Vierte) sich auf die Tatsache bezieht, daß es vier Töne vom niedrigsten bis zum höchsten Klang dieses Intervales sind (z.B. c d e f).

Barbaro versteht Proportion als Vergleich zweier Quantitäten unter demselben Gesichtspunkt oder zweier Größen derselben Gattung46; in dieser um Sachlichkeit bemühten Definition bezieht er sich auf die logisch-mathematischen Proportionstrakte des Mittelalters, deren bekanntestes Beispiel der im 15. und 16. Jahrhundert häufig aufgelegte Tractatus proportionum Alberts von Sachsen ist.47 In Übereinstimmung mit den Kategorien dieser Abhandlungen macht er weitere Unterscheidungen, etwa zwischen gleichen und ungleichen Proportionen sowie zwischen maggiore und minore; die proportione maggiore, die das Verhältnis einer großen Quantität zu einer kleineren angibt, wird dreifach danach unterschieden, um wie viel die größere Quantität die kleinere übersteigt. Diese Einteilung ergibt molteplice, sopraparticulare und soprapartiente Proportionen sowie weitere Differenzierungen ähnlicher Art, die ausführlich bei Boethius erläutert sind48 und schließlich zu einer großen Zahl terminologisch exakt faßbarer Verhältnisse.

44 JACOBUS ALKINDUS, De rerum gradibus, in: MUKHTAR IBN AL-HASAN, Tacuin sanitatis, Straßburg 1531, S.140-161.
46 BARBARO, I dieci libri, 1567, S.100.
47 ALBERT VON SACHSEN, Tractatus proportionum, Padua 1482, c.1-r.
führen. Nach der grundsätzlichen Erläuterung der musiktheoretischen Proportionenlehre erklärt Barbaro das der Proportion nachfolgende Prinzip, die Proportionalität, die der Vergleich zweier Proportionen ist und mit Vitruvs *eurythmia* identifiziert wird. Die mit schöne Zahl (bell numero) übersetzte Eurythmie dient ihm als theoretischer Leitbegriff für das ästhetische Prinzip der Proportionalität.49 Dieser Vergleich zweier Proportionen führt wiederum zu pythagoräischen Intervallen wie *dupla* (2:1) und *sesquialtera* (3:2); deren Unterteilung ergibt schließlich eine aus drei Klangen bestehende Proportionalität, wenn etwa die Zerlegung der Oktave (proportionalità dupla, 2:1 oder 4:2) mittels der Quarte und Quinte als 4:3:2 ausgedrückt wird.50

Barbaros musiktheoretisch hergeleitete Proportionen sind als Ausdruck eines intelligiblen und kommunizierbaren Systems in seiner kunsttheoretisch entwickelten Ästhetik verwurzelt. Sein Diskurs, basierend auf genauen musiktheoretischen Definitionen, ist eine folgerichtige Weiterführung seiner zu Beginn des Vitrukkommentars dargelegten Auffassung, daß Kunst eine intellektuelle und rational kontrollierte Tätigkeit sei, die nicht auf der sinnlichen

49 BARBARO, I dieci libri, S.26-27 und S.33.
50 Ebd., S.100-102; vgl. FEINSTEIN, Der Harmoniebegriff, S.140-142.
51 Vgl. ARISTOTELES, Metaphysica 1.5. (985b-986b).
52 PLATON, Timaeus 35b-36b.
53 BOETHIUS, De institutione musica 1.2.
54 ISIDOR VON SEVILLA, Etymologiarum libri XX 3.17., PL82, Sp.63-64.
55 Vgl. FEINSTEIN, Der Harmoniebegriff.
Wahrnehmung, sondern auf einem rationalen Prinzip basiere. Barbaros allgemeine Würdigung der Proportion verweist auf dies intellektuell anspruchsvolle und die sinnliche Wahrnehmung übersteigende Prinzip seiner Kunsttheorie:

In weniger pointierter Weise wiederholt Barbaro hier die auch von Luca Pacioli und Cesare Cesariano formulierte Auffassung, daß die Proportion als Übereinstimmung von Zahl, Maß und Gewicht in allen irdischen wie kosmischen, künstlichen wie natürlichen Bereichen zu finden ist. Doch kann hiermit nicht jenes elaborierte System vom proportione und proportionalitá gemeint sein, auf dem die architekturtheoretische Ästhetik Barbaros beruht. Denn er betont, daß im volkstäumlichen Sprachgebrauch jede Übereinstimmung und Ähnlichkeit als Proportion bezeichnet werde, wohingegen es ihm auf die vera proportione ankäme.57 Diese Betonung einer gegenüber den alltäglichen Maßverhältnissen existierenden wahren Proportion scheint notwendig, da Barbaros proportionstheoretische Auffassung Teil seines logisch entwickelten und intellektuell anspruchsvollen Systems ist. In dessen Argumentationsrahmen fungiert die Proportion als Vermittler zwischen einem höheren Prinzip und seiner operativen Umsetzung. Dieses Prinzip selbst ist fest im menschlichen Verstand (mente) verankert, denn die sinnliche Wahrnehmung scheidet

56 Tanta è la forza della proportione, tanta è la necessità, tanta è l’utilità di essa nelle cose, che non può alcuno nè all’orecchie, nè agli occhi, nè agli altri sensi recare alcuna dilatatione senza la conuenueozza, & la rispondenza della ragione, la doue tutto quello, che dilietta, o piace, non per altro diletta & piace, se non perche tiene proporcionata misura, & moderato temperamento. Non prima coniletto, & piacere nell’animo per le orecchie discendo le voci, & i suoni, che tra se non convenghino in proporcionata ragione di tempo, & di distanza. Le belle inuentiioni de gli huomini tanto hanno del buono, quanto più ingeniosamente sono proportionate. Efficacissima cosa è nel comporre, & mescolare le semplici medicine, la proportione, come nel fare Tiriaca, & il Mitradato. Diuina è la forza de i numeri tra se con ragione comparati. nè si può dire, che nella fabbrica di questa università, che noi mondo chiamamo, & nel picciol mondo anchora, sia cosa più ampio, più degenza della conuenueozza del peso, del numero, & della misura, con la quale il tempo, lo spacio, i movimenti, la urtù[.] la faella, lo artificio, la natura, il sapere, & ogni cosa in somma diuina, & humana è composta, cresciuta, & perfetta. BARBARO, I dieci libri, 1567, S.97; dieser Text befindet sich in der lateinischen Ausgabe auf S.57, in der Edition von 1556 auf S.80.

57 BARBARO, I dieci libri, 1567, S.97-98.
aufgrund ihrer Unzuverlässigkeit für die einwandfreie Vermittlung proportionalen Wohlgefallens aus. Seine Verankerung im Verstand folgt aus dessen Eigenschaft, die dem Göttlichen am nächsten stehende menschliche Anlage zu sein, und die inhaltliche Bestimmung des die Proportion enthaltenden kunsthethorischen Prinzips basiert auf einem breitgefächerten Verständnis von dem, was Barbaro *ragione* nennt. Diese ist zunächst als eine vernünftige Vorstellung die optimale Anlage des Verstandes und dadurch wiederum dem Göttlichen nahe. Diesselbe *ragione* ermöglicht auch den für die Definition der Proportion notwendigen Vergleich der Zahlen untereinander und gibt ihnen damit göttliche Kraft. Gleichzeitig aber ist die vernünftige Vorstellung (*ragione*) auch identisch mit der wesenhaften Form (*forma*), mit Vitruvs sechs architektonischen Grundbegriffen, mit dem *discorso* (lat. *ratio* *c*inatio) sowie mit der bedeutenden Sache (*cosa *significante*). Schließlich läßt sich diese *ragione* in jener Proportion konkret fassen, deren Eigenschaften die Ergötzung und das Wohlgefallen an den Dingen gewährleisten.58 Damit werden Ergötzen und Wohlgefallen mittels der Proportion zu verstandesmäßig entwickelten und intellektuell wahrnehmbaren Dingen.

3. Barbaros Proportion und Vitruvs Maß

59 Ebd., S.110-111.
60 Ebd., S.34; vgl. GELLUS, Noctes atticae 1.1.
vollkommene Maß das des Menschen ist, stammt jedes brauchbare Maß selbst von letzterem. Diese Begründung anthropomorpher Maße bekräftigt Barbaro schließlich auch mit jenem Topos, gemäß dem die Dimensionen der heiligen Gebäude auf den Menschen als dem Ebenbild Gottes zurückgehen:

61 La natura maestra ci insegna come hauemo a reggerci nel compartimento delle fabbriche: imperoche non da altro ella uoole, che impartiremo le ragioni delle simmetrie, che nelle fabbriche de i templii usaro doemo, che dal sacro tempio fatto ad imagine, & simiglianza di Dio, che è l'uomo, nella cui compositione tutte le altre meraviglie di natura sono comprese. et però con saggio auedimento tolsero gli antichi ogni ragione del misurare dalle parti del corpo humano.

BARABRO, I dieci libri, 1567, S.110.

64 DANIELE BARABRO, La pratica della perspettiva, Venedig 1569, S.179-180.

65 BARABRO, I dieci libri, 1567, S.111.

66 BARABRO, Vitruvii de architectura, S.90.
musikalischen Harmonien sind insofern anthropomorph, als sie auf der Macht jener Zahlen beruhen, die der Zusammensetzung des Universums zugrundeliegen. Und weil der gemeinsame Nenner der gegeneinander ausgetauschten Proportionssysteme der menschliche Körper ist, versucht Barbaro schließlich, auch in dessen Komposition die Existenz jener Verhältnisse nachzuweisen, die für die Intervalle in der Musik gelten.\(^{67}\)

\(^{67}\) Ebd., S.111.
4. Barbaro als Mäzen

Daniele Barbaro war einer der profiliertesten Mäzene im Veneto des Cinquecento\(^68\), und seine kunsttheoretische Auseinandersetzung mit der Proportion mußte daher anders aussehen als die eines autodidaktisch gebildeten Künstlers wie Cesare Cesariano. Die Existenz zweier verschiedener Proportionssysteme, von denen das eine auf metrologische Konventionen sowie deren Berechnungsmodus und das andere auf die Musiktheorie zurückgeht, reflektiert also die unterschiedliche Stellung und Absicht ihrer Urheber. Vitruvs Variante, deren praktischer Ursprung von einem handwerklichen Künstler wie Cesariano erörtert wurde, bezeichnet ein enges Verhältnis zwischen Entwurf und Ausführung, während Barbaros Proportionstheorie den Standpunkt des Auftraggebers wiedergibt, der seinem Architekten bedeutungsschwangere Maßverhältnisse empfiehlt. Das Proportionssystem des beauftragenden Mäzens repräsentiert den Anspruch des Architekturbetrachters, der neben der utilitären und repräsentativen Aufgabe eines Gebäudes dessen ästhetischen Wert auf seine Weise ausgedrückt sehen möchte. Dieser ästhetische Wert hängt wie im Falle der Musik von Freude (diletto) und Gefallen (piacere)\(^69\) ab, die ihrerseits allein durch die Proportion gewährleistet sind. Hierbei trägt der Auftraggeber oder Mäzen die Proportion als ein theoretisches Postulat von außen an die Architektur heran, während Architekten wie Vitruv und Cesariano, die mit ihren Proportionsvorstellungen durchaus eine ästhetische Absicht verfolgen, jene eher aus der praktischen Notwendigkeit heraus verstehen. Die Proportion wäre also das Medium zwischen zwei verschiedenen Kommunikationsebenen, zwischen dem Auftraggeber und seinem Architekten.

Das Modell zweier Mitteilungsebenen, zum einen repräsentiert durch Cesariano und zum anderen durch Barbaro, hat allerdings nur hypothetischen Charakter und kann lediglich dazu dienen, die unterschiedlichen Standpunkte beider Vitruvkomentatoren zu verdeutlichen. Realistischer ist der Vergleich zwischen Barbaro und seinem Architekten und Freund Andrea Palladio. In dessen Falle wurde das Ideal Wirklichkeit, und der Architekt war dank seiner intellektuellen Fähigkeiten und aufgrund seiner Assozierung mit den zeitgenössischen Humanisten des Veneto in der Lage, über kunsttheoretische Programme mit seinen Auftraggebern zu kommunizieren. Das Medium dieser Kommunikation intellektuell hervorgebrachter Vorstellungen waren musikalisch definierte Proportionen, die wiederum als Mittel zwischen Zweck und Prinzip, die kunsttheoretische Vorstellung von der wesenhaften Form operabel machten (s.o.). Barbaro erlebte die Erfüllung seines Ideals in der Person Andrea Palladios, der nach dem Erscheinen des Vitruvkomentars die dort entwickelten Proportionen tatsächlich häufiger anwandte als vorher.\(^70\)

Barbaros Proportionsbegriff basiert auf der Vorstellung, daß zwischen Auftraggeber und Architekt insofern eine Zusammenarbeit besteht, als eine

\(^{69}\) Ebd., S.97 (vgl. Anm. 56).

»Bedeutung« von Architektur (im Sinne von significare) postuliert und mitgeteilt werden kann. Die musikalischen Proportionen selbst sind das Medium eines Diskurses, dessen Teilnehmer sowohl Architekt und Auftraggeber als auch jene Benutzer und Betrachter von Architektur sein können, die an ihm durch die Lektüre von Kunstliteratur teilhaben. Die Teilnehmer eines architekturtheoretischen Diskurses beziehen sich hierbei auf die Bedeutung der Architektur, die durch die Proportion sowohl induziert als auch erkenn- und kommunizierbar gemacht ist. Das »Bedeuten« (significare) selbst geschieht, wie Barbaro schreibt, durch jene vernünftige Vorstellung (ragione) im Verstand des Architekten, die durch Proportion ausgedrückt wird.

5. Zusammenfassung - Cesariano, Philandrier, Barbaro

Cesare Cesariano, Guillaume Philandrier und Daniele Barbaro, die drei wichtigsten Kommentatoren Vitruvs, verstanden dessen Proportionsfigur keineswegs als das Symbol einer metaphysischen Architekturauffassung. Die Kommentare zeigen generell kein homogenes Interpretationsmuster und entwickeln am Beispiel jener Figur die verschiedensten Vorstellungen, die nicht immer mit den von Vitruv selbst erläuterten Zusammenhängen harmonieren. So hatten die weniger praktisch orientierten Theoretiker wie Barbaro und Philandrier kein nennenswertes Interesse an dem metrologischen und

71 BARBARO, I dieci libri, 1567, S.11.
72 Vgl. ebd., S.97, in der lateinischen Ed. S.80, in der italienischen von 1556 S.57.
baugeometrischen Hintergrund der Vitruvischen Figuren. Dieser Mangel war einesteils auf den ursprünglich korrupten und in den zeitgenössischen Ausgaben von *De architectura* nicht zufriedenstellend emendierten Text zurückzuführen, anderenteils aber auf die spezifischen Standpunkte der einzelnen Kommentatoren. So artikulierte Philander mit seiner antiquarischen Herangehensweise ein Architekturverständnis, in dem eine wie auch immer ausgedrückte Proportionstheorie keinen ästhetisch bestimmenden Stellenwert hatte. Demgegenüber vertrat Barbaro eine Auffassung, deren zentraler Punkt eine elaborierte und musikalisch definierte Proportionstheorie war. Wiederum völlig andere, nämlich praktische Vorstellungen, verband Cesare Cesariano mit der Vitruvischen Proportionsfigur; er kam damit dem ursprünglichen Sinn des erläuterten Textes am nächsten.

6. Nachbemerkung

In einer nicht architekturtheoretischen Quelle des späten 15. Jahrhunderts, in Rudolf Agricolas zuerst 1515 erschienener *De inventione dialectica*, findet sich tatsächlich die Beschreibung eines logisch bestimmten Modells architektonischer Kommunikation. Agricola schreibt, daß der Architekt zwar über die Ausführung der von den Handwerkern geleisteten Arbeit bestimme, aber bezüglich des Gebäudes und seines Auftraggebers - also hinsichtlich von Zweck (fine) und Ursache (causa efficiens) - ebenso ein Medium (medium) sei wie die Handwerker (fabri) und ihre Werkzeuge.}

¹ Vgl. WITTKOWER, Architectural Principles, S.89-100.
² FRANCESCO GIORGI, De harmonia mundi totius cauta tria, Venedig 1525.
1. Francesco Giorgi

Francesco Giorgi (1453-1540) gehörte seit 1482 den Observanten der Franziskaner an und sah sich Zeit seines Lebens sowohl mit theologisch-intelлектuellen als auch mit politischen und architektonischen Aufgaben betraut. Nach seiner Ernennung zum Lector für Theologie und Philosophie, 1473, wirkte er von 1502 bis 1508 als offizieller Prediger in S. Marco zu Venedig und 1510 als Prokurator der Bauhütte für das Santkuarium in Motta di Levanza. Im Jahre 1518 begann Giorgi die Abfassung von De harmonia mundi, deren endgültige Fertigstellung sich allerdings bis 1525 verzögerte. Nach seinem Engagement 1529/1530 als Berater für die Scheidung Heinrichs VIII. und Katharinas von Aragon übernahm er 1533 die Aufgabe, der Bauhütte der Venezianischen Franziskanerkirche S. Francesco della Vigna vorzustehen. Damit wurde er zum Modellfall eines Klerikers, der nicht nur das metaphysische Programm einer Kirche aus seinen religiösen Anschauungen entwickelte, sondern auch direkten Einfluß auf die architektonische Umsetzung dieses Programms hatte.5

Es gibt keine Hinweise dafür, daß Giorgi sein erstes architektonisches Engagement von 1510 aufgrund von Vorstellungen und Kenntnissen erhalten hat, die später in De harmonia mundi formuliert wurden. Ebenso wenig dürfte die traditionelle Bezeichnung Gottes als summus architectus in De harmonia mundi ein Beleg für eine architekturtheoretische Inspiration sein, auf deren Grundlage Giorgi schließlich dieses Werk verfaßte. Der eigentliche Anlaß für seine Niederschrift ergab sich vielmehr aus der damaligen Situation des Franziskanerordens. Giorgi gehörte innerhalb dieses Ordens der Reformfraktion an, die die Erneuerung der römischen Kirche, Säuberung der Orden, Restauration der Disziplin und Rückkehr zu den Quellen des Evangeliums anstrebte.7 Diese Bestrebungen lassen sich gleichzeitig in größere Zusammenhänge einordnen; so teilte Giorgi die Überzeugung anderer an der »antiken Theologie« interessierter Humanisten, daß mithilfe der vermeintlich prächristlichen Texte des Hermes, des Pythagoras und der Orphica die ursprüngliche Religion und damit der Ursprung des Christentums selbst zu entdecken sei.8 Hinzu kam seit der Vertreibung der Juden aus Spanien, 1492, das Wiederaufleben messianischer und eschatologischer Konzepte durch die jüdische Kommune in Venedig. Die dadurch ermöglichte Kenntnis aramäischer und hebräischer Quellen nährte die Hoffnung, daß man - im Sinne der »antiken Theologie« und der concordia omnium philosophorum und theologorum - durch die Kenntnis der semitischen Sprachen in die letzten Mystерien der Offenbarung eindringen könne.9

Aufgrund der globalen Entstehungszusammenhänge kann De harmonia mundi nicht als eine genuin architekturhistorische Quelle gelesen werden, doch

6 GiorGi, De harmonia mundi 3.1.1., fol.27v.
andererseits muß in Rechnung gestellt werden, daß gerade die platonisch-
pythagoräischen Harmoniekonzepte dieses Werkes die Voraussetzung für S.
Francesco della Vigna abgaben. Daher stellt sich die Frage nach dem
eigentlichen architekturhistorischen Wert von De harmonia mundi.

2. Das Memorandum für S. Francesco della Vigna

Das Memorandum für S. Francesco della Vigna wurde am ersten April 1535,
sieben Monate nach der Grundsteinlegung, unterzeichnet und hatte vor allem
den Zweck, in der Zwischenzeit entstandene Zweifel am Sinn des Neu-
bzw. Umbaus der Kirche auszuräumen. Möglicherweise vor dem Hintergrund der
durch den Dogen Andrea Gritti angeregten renovatio urbis Venetiarum
einerseits und der religiösen Erneuerung des Franziskanerordens andererseits,
sollten die im Memorandum zum Ausdruck gebrachten Harmonievorstellungen
einer befürchteten Infragestellung des gesamten Projekts begegnen.\(^\text{10}\)

Im Memorandum erläutert Giorgi, wie die Kirche gemäß den harmonischen
Proportionen, mit denen Plato im Timaeus den Zusammenklang des Weltenbaus
und seiner Teile beschrieben habe, vollendet werden könne. Die Grundlage der
hierzu empfohlenen Rationes hatte er bereits in De harmonia mundi ausführlich
dargelegt. Ausgehend von den sieben Zahlen des Platonischen Lambda, die die
Harmonie des Weltalls darstellen, drückt Giorgi die Proportionen der Kirche in
musikalischen Verhältnissen wie Quinte (2:3), Quarte (3:4), Oktave (1:2) usw.
aus.\(^\text{11}\) Weder Vitruv noch dessen Proportionsfigur werden im Memorandum
erwähnt; lediglich eine aus der Bibel abgeleitete anthropomorphe Architekturaussage erinnert an Vitruvs Bemerkung, daß die heiligen Gebäude
gemäß den Proportionen des menschlichen Körpers zu errichten seien:
Als jener [d.i. Gott] dem Moses die Gestalt und Proportion der Stiftshütte
offenbaren wollte, die er zu errichten hatte, da gab er ihm zum Vorbild das Welt-
gebäude und sprach (wie geschrieben steht in Exodus 25): »Und siehe zu, daß du
es machest nach ihrem Bilde, das du auf dem Berge gesehen hast.« Dieses Bild
war gemäß der Auffassung aller Weisen der Bau der Welt. Und mit Recht, denn es
geziemt sich, daß Gott einen besonderen und den Gebräuchen entsprechenden
Aufenthaltsort habe. Davon steht geschrieben in Jesaja 66: »Der Himmel ist mein
Reich und die Erde der Schemel meiner Füße.« Schließlich wollte der gepriesene
Gott, daß dieses besondere Gebäude seinem Weltall ähnele, nicht an Größe, denn
dessen bedarf er nicht, noch an Pracht, sondern an Proportion, welche er nicht nur
an den Stätten fordert, wo er auf Erden wohnt, sondern zuvorderst in uns
Menschen, von denen Paulus, an die Korinther schreibend, sagt: »Ihr seid der
Tempel des lebendigen Gottes.« Über dieses Geheimnis nachdenkend, gab Salomo
der Weise dem herrlichen Tempel, den er erbaute, die Proportionen der Stiftshütte
des Moses.\(^\text{12}\)

\(^\text{10}\) Vgl. FOSCARI/TAFURI, L’armonia e i conflitti, bes. S.70-78 und S.34-36.
\(^\text{11}\) Vgl. WITTKOWER, Architectural Principles, S.89-100.
\(^\text{12}\) Il qual [i.e. Iddio] volendo instruire Mosè della forma et proporzione del Tabernacolo, ch’egli
hawe a fare, li diede per modello la fabrica di questa casa mondane, dicendo (si come è scritto
nell’Esodo al vigesimoquinto): Guarda et fa secondo l’esempio, che si è mostrato nel monte. Il
qual esemplare, secondo l’opinione di tutti li Saggi, fu la fabricha del Mondo. Et meritamente,
perché il dover era, che havesse il luogo particolare ad habitar, conforme al commune, del quale
è scritto in Isaia, al sessagesimo sesto: Il cielo è la mia reggia, et la terra il scabello deUli miei
piedi. Volse dunque Iddio benedetto questa fabrica particolare simile alla sua machina grande,
non in quantità, della quale egli non ha bisogno, né diletto, ma simile in proporzione, la qual egli
volle non solamente nelli luoghi materiali ove habita, ma singolarmente in nui, della quali dice

3. De harmonia mundi

De harmonia mundi besteht aus drei Gesängen, deren jeweils acht Töne die Harmonie einer vollendetem Oktave bilden. Die Struktur des gesamten Werkes reflektiert Giorgis Überzeugung, daß der Kosmos nach den Gesetzen einer musikalisch ausdrückbaren Harmonie geordnet ist. Da der Mensch als Mikrokosmos dieselbe Struktur aufweist, wird sein Aufbau mit demjenigen des Makrokosmos vergleichbar. Dadurch kann das zentrale Thema Giorgis, der Mensch als Mikrokosmos und seine Erlösung von der Sünde sowie sein Aufstieg zur Übereinstimmung mit Gott, in den musikanalogischen Argumentationsrahmen eingearbeitet werden. Die musiktheoretische Grundlage dieses Rahmens wird dabei nicht nur ausführlich erläutert\(^\text{13}\), sondern auch bis in die Details der menschlichen Proportionen hinein verfolgt (s.u.).\(^\text{14}\) Die elaborierte Struktur des musikalischen Schemas ergibt sich aus der Auffassung Giorgis, daß die unzuverlässigen Sinne die intellektuelle Natur Gottes niemals erreichen können. Daher habe man sich der unsichtbaren Harmonie zwischen Archetypus und Mensch mittels der verläßlichen Wissenschaften von Physik, Arithmetik, Astronomie, Geometrie und Musik zu widmen. Denn, so schreibt er weiter, von den sichtbaren Dingen zu den unsichtbaren in Gott gelange man durch die Kenntnis der Harmonie; da Mikro- und Makrokosmos durch die Macht der Zahl mit den überirdischen und unsichtbaren Dingen (also mit Gott, dem Archetypus und den himmlischen Sphären) verbunden seien, habe man sich auf deren Harmonien zu konzentrieren.\(^\text{15}\) In der Darstellung dieser Harmonien dürfte Giorgis Betonung der musikalisch geordneten Struktur des Kosmos auf die kulturellen Verhältnisse in Venedig zurückzuführen sein. Selbst politische Zusammenhänge nicht selten in musikalischen Metaphern ausgedrückt wurden und wo seit dem Ende des 15. Jahrhunderts ein Harmo-

\(^\text{13}\) GIORGI, De harmonia mundi 1.5.1-11., fols.85r\(84r\)-92r.

\(^\text{14}\) Ebd., 1.6.3., fol.101\(r\); 3.1.1., fol.2\(v\) (vgl. auch Anm.63.).

\(^\text{15}\) Ebd., proem.
niebegriff entwickelt worden war, der mehr umfassen konnte als die auf Musik selbst beschränkte Konkordanz bestimmter Tonfolgen. 16

Giorgi faßt die der Weltharmonie entsprechende und in drei Gesängen enthaltene Gliederung seines Werkes mit den folgenden Worten zusammen:

Daher werden wir im ersten Gesang die Konsonanz besingen, die wechselseitig zwischen der einen und der anderen der beiden Welten sowie zwischen beiden und dem Archetypus besteht. Im zweiten werden wir von der Übereinstimmung aller Dinge mit dem Messias, ihrem Haupt, handeln sowie von demjenigen, der durch Christus für alle Dinge, die durch die Sünde zerbrochen und korruptiert worden waren, die Zusammenklänge wiederhergestellt hat. Im dritten Gesang wird vom harmonischsten Band aller Dinge gehandelt, vom Menschen, der zurückgerufen werden soll zur Harmonie mit allen Dingen, die sich zu ihmbinden lassen, und mit dem Schöpfer, mit dem übereinzukommen, ja sogar eins zu werden, seine Bestimmung ist. 17

16 Vgl. FOSCARI/TAFURI, L’armonia e i conflitti, S.52-55.
18 Vgl. VASOLI, Profezia e ragione, S.242-278.
19 GIORGI, De harmonia mundi 1 proem., fol.1v.
20 Ebd., 1.8.3., fols.167v.-168v.
21 Ebd., 1.6.2., fol.100v.
22 Vgl. VASOLI, Profezia e ragione, S.279-310.
Gott. Der Herausgeber einer 1563 erschienenen Neuausgabe des Werkes faßt diese Erörterung in seinem Vorwort knapp zusammen:

4. Giorgi und die christliche Kabbala

Giorgi, der offenbar keinem festumrissenen intellektuellen Kreis angehörte, hat verschiedenste Quellen benutzt. Für seine musiktheoretischen Kenntnisse waren eher mittelalterliche denn zeitgenössische Autoren dieser Materie, aber auch Boethius und Ficino vorbildlich. Eine Reihe allgemeiner Anschauungen gehen ebenfalls auf Ficino und den Neo-Platonismus zurück, verschiedene

23 Vgl. ebd., S.310-337.
24 Tertia denique huius operis parte elegantissima facillime edocentur de homine, & armonia siue consonantia, quae in ipso per Christum mediatorem Dei & hominum reparata est atque stabilita. FRANCESCO GIORGI, Promptuarium rerum et theologicarum et philosophicorum, Paris 1563, Renatus Benedictus [Hrsg.] ad lectorem.
25 GIORGI, De harmonia mundi 3 prooem., fol.1r.
26 Ebd., 3.1.1-2., fol.s2v-3v.
27 Ebd., 3.5.3., fol.s5r.
28 Ebd., 3.5.8., fol.s54v-55r.
29 Ebd., fol.s53r; 3.1.9., fol.10v; vgl. D. P. WALKER, Spiritual and Demonic Magic. From Ficino to Campanella (Studies of the Warburg Institute 22), London 1958, S.113-114.
30 GIORGI, De harmonia mundi 3.5.1., fol.s2v.
33 Vgl. VASOLI, Profezia e ragione, passim.
Argumente sind Cusanus und die Ausführungen über Christus als mediator hominum et Dei vermutlich Pico verpflichtet. Dazu kommen als grundlegend die Bibel, die Kirchenväter sowie Platon, Plotin und Hermes. Außerdem gibt es Anzeichen dafür, daß Teile der Argumentation, wie der Mensch Übereinstimmung mit Gott haben könne, auf Anregungen aus Kreisen der christlichen Kabbala zurückgehen. Es handelt sich hierbei um eine außergewöhnlich breit angelegte theologische Interpretation der Mikrokosmosidee, um die Betonung der Rolle Christi sowie um die Verbindung kabbalistischer und pythagoräischer Spekulationen im Rahmen der Zahlenmystik. In seiner zweiten ausführlichen Diskussion des Mikrokosmos zu Beginn des dritten Gesanges schreibt Giorgi:

Der höchste Schöpfer selbst hat sogar das ganze Gerüst der Welt symmetrisch gemäß dem menschlichen Körper und durchaus diesen darstellend gestaltet. Nicht ohne Berichtigung wird daher jene die große, dieser hingegen die kleine Welt genannt.

Streng genommen widerspricht diese Formulierung zumindest der ersten Schöpfungsgeschichte (Genesis 1.1.-2.4.), denn der Mensch als das zuletzt geschaffene Lebewesen kann eigentlich nicht als Vorbild für die Schöpfung der Welt genommen werden, da diese ja gerade in den Tagen vor der Erschaffung des Menschen entstanden war. Die besondere Formulierung dieser Passage verweist auf kabbalistische Mikrokosmosvorstellungen, wie sie auch von den ersten Autoren der christlichen Kabbala verwendet wurden. Nach den Anschauungen der Kabbala war der Mensch ein kosmisches Urwesen, Adam Kadmon, das die ganze Welt umfaßte und als erste Konfiguration des göttlichen Lichts und als großer Mensch, Makro-Anthropos, die Welt als Bild des Schöpfergottes darstellte. Diese Auffassung vom archetypischen Menschen als spirituelle Präfiguration der Schöpfung hat auch bei anderen an der Kabbala interessierten Autoren wie Pico, Reuchlin und Paulus Ricius Spuren hinterlassen. Pico diskutiert das erste Wort der Genesis, »im Anfang« (lat. in principio, hebräisch bereschith), und geht dabei auf die kabbalistische Vorstellung vom großen Menschen (homo magnus) als Grundlage der Schöpfung ein. Reuchlin widmet mehrere Abschnitte seines Buches über die Kabbala, De arte cabalistica, dem Mikrokosmos und erläutert dabei ausführlich die Stellung des großen Adam, der als Lebensbaum des Paradieses und als Mikrokosmos inmitten der zehn Sephiroth steht.}

36 Immo ipse opifex summus tota[m] mundi machina[m]/ symmetra[m] corpori humano & tota[m] ei symbolica[m] fabricavit: unde no[n] i[m]erito ille magnus hic autem parus mundus nuncupatur. GIORGI, De harmonia mundi 3.1.1., fol.2r.
39 JOHANNES REUCHLIN, De arte cabalistica, Hagenau 1517, fols.2r-3r, 20r-20r, 70r-70r.
40 Ebd., fol.2r.
seiner knappen Darstellung der kabbalistischen Methoden einen Menschen aus Fleisch und Blut, einen himmlischen und schließlich einen archetypischen Menschen, der ebenfalls auf die Adam-Kadmon-Vorstellung zurückgehen dürfte.\footnote{PAULUS RICIIIS, In cabalistarum seu allegorizantium eruditionem isagogae, Augsburg 1515, fol.6v, Nr. 26; vgl. BLAU, Christian Interpretation, S.70.}

5. Mikrokosmos

KAPITEL XII

In diesem [dem Mikrokosmos] hat der Schöpfer mit unschätzbarer Kunst und unbegreiflicher Weisheit all das zusammengedrängt, was er in dem so großen Gebäude verteilt hatte. So wie er ein Band aller Dinge machte und alles in eines zusammenballte, so emaniert alles aus einem, und so werden die im Menschen zu demselben zusammengeballten Dinge durch diesen zurückgeführt. Das ist notwendig, wenn das Werk den Schöpfer nachahmen soll. Dieser ist gemäß Hermes eine Art Sphäre und rund. Von gleichem Maße und gleichem Bau ist dessen [des Werkes] Kreis [...].

Nach dieser Argumentation gelangt Giorgi zur Erörterung jener mikrokosmischen Figur im Kreis, die bis heute als eine Interpretation des Vitruvischen *homo ad circulum* gilt:

Die Metaphorik von Sphäre und Kreis geht auf den um 1200 entstandenen pseudo-hermetischen *Liber XXIV philosophorum* und auf eine Passage in Lactantius' *De opificio Dei* zurück. Die in jenem pseudo-hermetischen Traktat formulierte Auffassung von Gott als der *sphaera intelligibilis* wurde im

44 GIORGI, De harmonia mundi 1.6.1., fol.99v.
45 In quo arte qua[a][m] inextimabili, & sapie[n]ia inco[m]prehensibili omnia glomerati Artifex, quae in tam spatiosa machina distribuerat: ut omniu[m] ren[u]r[m] uinculu[m] factus/ omniaq[u]e in uuum conglomeran, sicut ab uno emanarunt ipse omnia, ita ad idem in homine conglobata per ei[n]dem reducentur. Quod nescerc est/ si opus debet imitari artifex: qui sphaera qua[a][m], & circlu[s] est, ait Hermes. Pariq[ue] modo & fabrica eius est circulus [...]. Ebd., fol.100v.
48 LACTANTIUS, De opificio Dei 8, PL7, Sp.34.

49 ALANUS AB INSULIS, Theologicae regulae 7, PL210, Sp.627.
50 BONAVENTURA, Itinerarium mentis in Deum 5.8.; vgl. BONAVENTURA, Tria opuscula, Florenz 1938, S.337.
52 BARTHOLOMAEUS ANGLICUS, De proprietatibus rerum 1.16, Frankfurt 1601, S.12.
55 Vgl. z.B. GIORGI, De harmonia mundi 3.6.1., fol.56v; 1.6.2., fol.100v.

Giorgis eigentliche Auseinandersetzung mit Vitruv Proportionsfigur folgt erst zu Beginn des dritten Gesanges.

So groß ist die Ebenmäßigkeit des menschlichen Körpers, daß sie sich erstreckt auf eines kündigen Architekten Tempel, Gemächer, Häuser, Säulen, Epistyle, Basen und alle Glieder von Bauwerken, welche auch immer es seien mit ihren noch so kleinen Teilen, nämlich Quadren, Trochilen, Plinten, Superfilien, Astragalen, Modulen, Säulensimsen und Stylobaten und was immer, bis hin zu Epistylen, Basen, Säulen und Anten, daß sie [i.e. die Ebenmäßigkeit] sogar jegliche Art von Bauwerk nach dem Maß des menschlichen Körpers aufgeteilt hat. Wie z.B. Vitruv, unstreitig der Meister dieser Lehre, in seiner langen Abhandlung

57 ARISTOTELES, Libro de celo & mundo cum expositione Sancti Thome de aquino, & cum addizione Petri de aluernia, Venedig 1495, fol.31v (ich verdanke diesen Hinweis Kristien Lippincott); siehe Appendix 4
58 Hyginii hysteriographi et philosophi [...] libri quattuor [...], Paris 1517.
59 GIORGI, De harmonia mundi 1.6.1., fol.100v.
60 M. Vitruvius per Jucundum solito castigator factus, cum figuris et tabula, ut iam legi et intelligi possit, Venedig 1511, fol.22v.

Im Zusammenhang der gesamten Argumentation liegt die Betonung hier auf der hervorragenden Ausstattung des menschlichen Körpers. Dessen Ebenmäßigkeit sei so vorzüglich, daß die erfahrenen Architekten sich seines Maßes zur Errichtung der Gebäude und all ihrer Teile bedient hätten. Es geht hier also nur insofern um Architektur, als sie die Vollkommenheit des menschlichen Körpers und seiner Proportionen verdient; diese werden daraufhin ausführlich beschrieben, weil der dritte Gesang, beginnend mit dem menschlichen Körper, vom Aufstieg des Menschen zu Gott handelt. Denn nur die einem Instrument vergleichbare wohlgestimmte physische Konstitution des Körpers ermöglicht die Verbindung zur wohlgestimmten Seele, die schließlich dem Pfad des Geistes folgend die Übereinstimmung mit Gott anstrebt (s.o.). Um eine proportionale Verbindung vom Körper zur Seele zu gewährleisten, versucht Giorgi dann die von Vitruv übernommenen Proportionen mit jenen musikalischen Harmonien in Einklang zu bringen, auf denen sowohl die Harmonie des Kosmos als auch die Argumentation des Buches beruht. Mit offensichtlichem Bezug auf Vitruv Unterteilung der Körpervöcke in Viertel, Sechstel, Achtel und Zehntel beschreibt er die musikalischen Äquivalente dieser Angaben:

Es sind nämlich alle Maße des menschlichen Körpers entweder nach vielfachen oder superpartikularen Proportionen geteilt oder gemischt; aus ihnen ergibt sich immer eine einfache oder eine zusammengesetzte Harmonie. Denn die zehnfache Proportion ergibt eine dreifache Octave und eine Quad und eine Quinte, die achtzehn eine dreifache Octave, die vierzehn eine Doppeloktave, die sechzehn eine

\(^6\) Tanta est corporis co[m]mensuratio, ut periti Architecti te[m]pla, edes, domos, colu[m]nas, epistilia, bases, & o[m]nia membra artificiorum quacunque sint, cu[m] suis partibus etiam minuitaris, toris, uidelicet, quadris, trochiliis, plinthis, sup[e]rcellis, astragalis, modulis, spiris, stylobatis, & quicquid ad epistilia, bases, columnarum, & ad anites p[er]tinet, ad quodque[c]numf edificii genetis, ad metral[m] corporis humani partitum sit: sicut huius doctrine facile princeps Vitruviius longo sermone differens, interserit. Non potest aedes u[ll]a symmetria atque proportionationem habere compositionis, nisi in se hominis benefice figuratae, me[m]bro[m] habuerint exactam[m] rationem. Proportio a[m] architecture (ut inq[uil]) est rate partis me[m]bro[m] in omnibus operis totiusque modulatio ex qua ratio efficiscat symmetria[m]um. Ut ultra progressus pro[bar]e nititur ex articulis corporis numerum[m] o[m]nem atque numeros, qui denarii uel sextertii dicuntur, inuentos fuisse. Na[m] antiqui digitis numerabant & numeros indicabant digitibus ipsis: & edes omnes ad corporis me[n]sura[m] partitabant. Cui nimirum su[m]mus architectus Deus qui Noe docuit fabricare arca[m] ad mensura[m] humani corporis ut supra explicauimus. Insperu[m] mensurata a periti deducere uidi ex humano corpore: Immo ipse opificem summos totam[m] mundi machinam[m] symmetra[m] corporis humano & totam[m] ei symbolica[m] fabricavit: unde no[m]erit ille magnus hic aut[em] parus mundus nuncupatur. GIORGII, De harmonia mundi 3.1.1., fol.2f.
Doppelpoakte und eine Quinte, die dreifache eine Oktave und eine Quinte. In gleicher Weise sind alle Maße der anderen Glieder proportioniert und übereinstimmend. giorgi bezeichnet die bei Vitruv als Brüche der Körperhöhe angegebenen Rationes zunächst als Vielfache einer nicht genannten Einheit. So wird zum Beispiel Vitruvs Viertel zur vierfachen Proportion. Anschließend, wenn die Proportionen in ihren musikalischen Äquivalenten ausgedrückt werden, behandelt Giorgi Vitruvs Angaben wieder als Brüche. So kann er beispielsweise ein Viertel als das Produkt zweier Oktaven, ein Sechstel als das eines Doppelpoaktes und einer Quinte, ein Achtel als das von drei Oktaven und schließlich ein Drittel als das einer Oktave und einer Quinte ausdrücken. Eine rechnerische Überprüfung ergibt, daß lediglich die Angabe für ein Zehntel nicht stimmt.

Die differenzierte Betonung der musikalischen Harmonien, die sich bis in die Details der menschlichen Proportionen erstreckt, reflektiert die Absicht des Buches, das menschliche Streben zu Gott auch aus der niedrigsten Sphäre, d. h. auch aus der körperlichen Konstitution des Menschen zu entwickeln, denn nur der wohlgestimmte Mensch, homo bene chordatus, lebt fröhlich in Gott. In diesem Sinne werden auch Vitruvs Proportionen aufgefaßt und benutzt, denn sie sind die notwendigen physiologischen Angaben für jenen Aufstieg zur Übereinstimmung mit Gott, der Gegenstand des gesamten Werkes ist. Dabei spielt ein gegebenenfalls symbolischer Gehalt des Vitruvischen homo ad quadratum, der mit ausgebreiteten Armen den Mikrokosmos »bedeutet«, nicht die geringste Rolle. Denn obwohl Giorgi die betreffende Passage bei Vitruv ausführlich zitiert, läßt er gerade die Beschreibung der Figur im Quadrat aus!

6. Giorgi und Vitruvs Proportionsfigur

Die Verbindung pythagoräisch-platonischer Zahlenspekulationen in Form musikalischer Harmonievorsicht mit einem der Kabbala verwandten Mikrokosmos hätte nicht notwendigerweise zur Wahl Vitruvischer Proportionen führen müssen, obwohl diese Proportionen, wenn sie korrekterweise als Brüche aufgefaßt werden, recht gut in Äquivalenten einfacher musikalischer Verhältnisse ausgedrückt werden können. Giorgis Harmonievorsicht erforderte einen Proportionskanon, der die für den Aufstieg des Menschen zu Gott notwendigen Rationes lieferte. Da Albertis De statua zu ausführlich und Gauricus' De sculpturna von 1504 möglicherweise zu geschwächt und

64 Giorgi faßt die musikalischen Proportionen als abstrakte quantitative Verhältnisse auf, die in Brüchen ausgedrückt werden können. So ist die dreifache Proportion das Produkt einer Oktave (1/2) und einer Quinte (2/3), d.h. 1/3; die vierte Proportion das Produkt zweier Oktaven, d.h. 1/4; die sechsfache Proportion das Produkt einer Doppelpoakte (1/4) und einer Quinte (2/3), d.h. 1/6; die achtfache Proportion eine dreifache Oktave, d.h. 1/8. Die Angabe für die zehnfache Proportion ist falsch, denn das Produkt aus einer dreifachen Oktave (1/8) und einer Quinte (2/3) ist 2/24 oder 1/12. Um auf den korrekten Wert von 1/10 zu kommen, hätte Giorgi die dreifache Oktave mit einer großen Terz, 4/5, multiplizieren müssen.

65 GIORGI, De harmonia mundi 3.4.12., fols.50v-51v.

Wie im einzelnen zu zeigen sein wird, arbeitete Agrippa in seine bestehende Fassung der Occulta philosophia Material ein, das er teilweise schon annähernd 20 Jahre vorher, also kurz nach deren erster Niederschrift, gesammelt hatte. Definitivere Aussagen über die Revision seines Jugendwerks sind allerdings erst aus viel späterer Zeit bekannt. So schreibt Agrippa zu Beginn des Jahres 1524, daß er später (also nach 1510) der Occulta philosophia viele Kapitel angefügt habe. Andererseits beklagt er sich noch 1527 über die unzureichende Qualität der ersten beiden Bücher und über die völlige Verderbtheit des dritten, stellt aber gleichzeitig eine berichtigt und vervollständigte Herausgabe des gesamten Werkes in Aussicht. Agrippa hatte also seine ursprüngliche

Fassung bereits kurz nach ihrer Vollendung begonnen zu erweitern, die Erweiterungen aber bis 1527 zu keinem befriedigenden Abschluß bringen können.

Speziell für eine Publikation der Occulta philosophia gab es noch andere Gründe; so konnte er in einer überarbeiteten und gedruckten Fassung aktuelle Diskussionen berücksichtigen, der Gefahr eines unautorisierten Druckes durch andere vorbeugen und schließlich der Zirkulation verfälschender Manuskripte des Werkes entgegentreten. Außerdem war Agrippa brieflich wiederholt um die Occulta philosophia angestanden worden.

1. De occulta philosophia

Die übergeordnete Struktur des Werkes, seine Unterteilung in drei Bücher, die sich sukzessive mit der physikalisch-elementaren Welt, mit ihrer Begründung durch die mathematischen Wissenschaften und ihrer Perfektion durch die Theologie befassen, ist in der frühen Fassung bereits definitiv vorgegeben, erhält aber 1533 eine elaboriertere Ausführung. Grundsätzlich basieren diese Erweiterungen in der Ausgabe von 1533 nicht auf der Sichtung völlig neuen Materials, denn besonders die bereits 1510 benutzten hermetischen und neo-

5 Vgl. WALKER, Demonic Magic, S.90.

Daneben existieren auch signifikante Änderungen; die Dreiteilung der Magie in Physik, Mathematik und Theologie, bereits 1510 im zweiten Kapitel des ersten Buches erörtert, wird 1533 (1.1.) ausführlicher erläutert. Agrippa versucht hier, die in neo-platonischer Diktion beschriebene Ordnung der Welt - elementarisch, himmlisch und geistig (mundus elementaris, coelestis und intellectualis) - mit seiner dreigeteilten Magie in Einklang zu bringen.12 Und zwar, so Agrippas Argumentation, stiegen die Einflüsse des Urbildes (archetypus) von der geistigen über die himmlische zur elementaren Welt herab, so daß die Magie, die in drei Büchern beschrieben werde, mit dieser elementaren Welt beginne, um dann ihrerseits mittels Mathematik und Astrologie über die himmlische Sphäre zur geistigen emporzusteigen. Dieser

10 Vgl. PERRONE COMPAGNI, Una fonte di Agrippa.

Andere Erweiterungen in der vollständigen Ausgabe von 1533 sind eine indirekte Folge der zu Beginn des ersten Buches vorgenommenen Umstrukturierung. So wird das erste Buch um 6 Kapitel erweitert, die sich mit der Elementenlehre selbst und ihrer Beziehung zur himmlischen Sphäre befassen (1.3-6.). Im zweiten Buch schaltet Agrippa nicht nur eine völlig neue Betonung der mathematischen Wissenschaften ein (2.1.), sondern läßt auch zahlreiche neue Abschnitte über die Zahlen, ihre Bedeutung, über geometrische Figuren

15 TOMMASO DI CAMPANELLA, De sensu rerum et magica libri quattuor, Frankfurt 1620, S.261; F. PATRIZZI, Magia philosophica, Hamburg 1593, c.19r-28v; PLINIUS, Naturalis historia 30.1.: Unterteilung der Magie in Medizin, Religion und Mathematik/Astrologie, was Agrippas Einteilung in veränderter Reihenfolge entspricht, vgl. AGrippa, Occulta philosophia, 1533, I.1., fol.1.1.

(2.16-23.), über Musik und über menschliche Proportionen folgen (2.25-28.). Dabei finden teilweise alte Kapitel über die Musik erneute Verwendung, doch wird neben einigen anekdotischen Erweiterungen ihre Bedeutung für die Harmonie der himmlischen Körper erneut betont.\(^{19}\) Im einleitenden ersten Kapitel des zweiten Buches begründet Agrippa die neue Signifikanz der Mathematik damit, daß sie formaler sei als die Physik und damit wirksamer. Eine andere Änderung zeigt, wie weit Agrippa die Struktur seines Werkes im Sinne der platonisch-pythagoräischen Vorstellung von der mathematischen Harmonie des Kosmos erweiterte. Begann das zweite Buch der Fassung von 1510 noch mit einem Kapitel über die Bedeutung der Gestirnsbeobachtung für die Magie, so tritt dieser Abschnitt in die Mitte des genannten Buches (2.29.) zurück, um teilweise neuen, teilweise alten Erläuterungen über die Macht der Zahlen Platz zu machen. Im dritten Buch schließlich wird die vorher kürzere Erörterung über den Menschen als Mikrokosmos mit umfangreichem Material aus Francesco Giorgis *Harmonia mundi* und Picos *Heptaplus* erweitert. Daneben erhält das gesamte dritte Buch dreißig zusätzliche Kapitel.

2. Mikrokosmos I (1510 und 1516)

Im Gegensatz zur endgültigen Ausgabe der *Occulta philosophia* von 1533 mit ihren ausführlichen Ergänzungen zum Mikrokosmos enthält die Fassung von 1510 eine eher bescheidene Erörterung dieser Vorstellung:

\(^{19}\) Zwar erörtert Agrippa schon 1510 die Bedeutung der Musik für die Harmonie der Gestirne (AGRIPPA, Occulta philosophia, 1510, 2.32. und 2.33., fol.68r-69r, Ed.Meier, S.34a-35), doch werden diese Abschnitte später (AGRIPPA, Occulta philosophia, 1533, 2.25-26., fol.156-160) erheblich erweitert.

\(^{20}\) Creatus est homo ad imaginem Dei. Imago Dei mundus est, imago mundi homo est. Icercio a Grecis microcosmos dicitur, hoc est minor mundus. Mundus animal est rationale immortale. Homo simuliter animal est rationale, sed mortale, hoc est dissolubile. Nam, ut inquit Hermes, cum mundus ipse immortalis est, impossibile est partem eius aliquam interire. Mortis igiur nomen vanum est, quam admodum et vacuum nusquam est. Mori igiur fingimus hominem, cum anima a corpore separatur non quod aliqaud illorum interest sive convertatur in nihilum. AGRIPPA, Occulta philosophia, 1510, fol.98v, Ed. Meier, S.50.
Wie Agrippa selbst angibt, geht diese Passage auf Hermes Trismegistos zurück, der im achttzehnten Buch seines Pimander schreibt, daß nichts Seiendes vergehë. Die Quellen für den Einschub a Graecis microcosmos dicitur könnten Isidor, Honorius und Pico gewesen sein. Daneben sind möglicherweise auch noch geläufige Vorstellungen über den Menschen als Abbild Gottes aus dem Alten Testament eingeflossen (Genesis 1.27.).

21 Nam si secundus Deus est mundus, et animal immortale, impossibile est, immortalis animalis partem interire. Omnes vero in mundo, partes sunt mundi, maxime vero homo, rationale animal. HERMES TRISMEGISTOS, Poemander 18, Quod nullum culium pereat, zit. nach PATRIZI, Magia philosophica, c.253r.

23 Vgl. AGrippa, Occulta philosophia, 1510, fols.97r-100v, Ed. Meier, S.49a-50.

24 Lyon, Bibliothèque Municipale, Ms. Nr. 48, fols.44r-59r; vgl. ZAMBELLI, Agrippa, Dialogus, mit Wiedergabe des Textes.

27 Vgl. ZAMBELLI, Agrippa, Dialogus, S.61, Anm. 20 und 21.

28 PICO, De hominis dignitate etc., Ed. Garin, S.478 und 304.
Weise der Mensch eine kleine Welt sei, ist größtenteils eine Zusammenstellung von Anschauungen aus Picos Heptapluus:

Gegenüber der Formulierung von 1510 erhält die Mikrokosmosvorstellung nicht nur eine größere Selbständigkeit, sondern auch eine neue argumentative Betonung. Diese Betonung liegt auf der Teilhabe des Mikrokosmos am göttlichen Geist, und sie taucht in der Occulta philosophia von 1533 als Charakteristikum der zeremoniellen Magie wieder auf.

3. Mikrokosmos II (1533)

29 Homo microcosmus hoc est minor mundus dicitur quum in seipso habeat totum quod in maiori continetur: nam in ipso mixtum ex elementis corpus, celestis spiritus, plantarum vita vegetativa, brutorum sensus et ratio, angelica mens et atque dei similidato conspicientur. Sunt enim in eo elementa ipsa ignis, aer, aqua, terra per verissimas nature sue proprietates, in crasso atque terreno hoc hominis corpore. Est etiam in eo spirituale ethereumque corpusculum, quod anime vehiculum est, celo ipso proportione sua corresponde[n]. Est in ipso vita plantarum; elskdem omnibus apud eum quibus apud illas muneribus nutriendi, augendi, generandi officiis fungens. Est in ipso brutorum sensus tam intimus quam extimus; est in ipso celestis animus ratione praeditis atque pollens. Est in ipso angelici intellectus divinique mentis participatio. AGRIFFA, Dialogus de homine, fol.46r-v, zit. nach ZAMBHELLI, Agrippa, Dialogus, S.59.

zeremoniellen Magie und Religion, um hier als das vollkommenste Ebenbild Gottes, als Mikrokosmos und Band der Welten der göttlichen Erkenntnis teilhaftig zu werden. Agrippa beschreibt diesen letzten Schritt seiner Magie mit Formulierungen, die er teilweise wörtlich Francesco Giorgis 1525 erschienener Harmonia mundi entnommen hat:32

Der Mensch ist also das vollkommenste Ebenbild Gottes, insofern er alles in sich enthält, was in Gott ist. Allein Gott enthält alles nach seiner Kraft und auf eine einfache Weise, als die Ursache und der Ursprung von allem, in sich; dem Menschen dagegen hat er die Eigenschaft verliehen, daß er ebenso alles enthält, aber in der Wirklichkeit und nach einer gewissen Zusammensetzung, als Band und Verknüpfung von allem.33

In einer an Pico orientierten Ausführung wiederholt er dann, durch welche Stufen und Eigenschaften der Mensch als Mikrokosmos zu den Sphären der göttlichen Erkenntnis gelangt34 und wie er durch die Kenntnis dieser in ihm selbst enthaltenen Stufen das Wahrse in Gott erschauen darf. Wiederum mit einem Zitat aus Giorgis Harmonia mundi vervollständigt er seine Argumentation:

Auch findet sich nichts im Menschen, keine einzige Anlage, worin nicht etwas von der Gottheit schimmert; und ebenso ist nichts in Gott, was sich nicht auch beim Menschen zeigt. Wer daher sich selbst kennengelernt hat, der wird in sich alles, vornehmlich Gott erkennen, nach dessen Bild er gemacht ist; er wird die Welt kennen, deren Spiegel er ist; er wird alle Kreaturen kennen, mit denen er Verwandtschaft hat; er wird wissen, welche Nahrung, was er von den Steinen, den Pflanzen, den Tieren, den Elementen, den Himmeln, den Dämonen, den Engeln, kurz von einem jeden erlangen kann [...]35

Damit ist die Idee des Mikrokosmos - der Mensch als das Erde und Himmel verbindende Lebewesen - vollständig in jenes magische Procedere Agrippas eingearbeitet, das seinerseits, allerdings sukzessiv, vom Sterblichen und Sublunaren zum Unsterblichen und Göttlichen voranschreitet. In der dann folgenden Argumentation erklärt Agrippa, warum die dritte und letzte Stufe der Magie nach ihrer traditionell scholastisch-aristotelischen Einteilung theologisch und gemäß ihrer eigentlich magischen, auf Plinius zurückgehenden Gliederung religiös und zeremoniell ist. Wie Agrippa bereits in der Widmung zum dritten Buch schreibt, sei es schon immer das Bestreben der Magier gewesen, die Seele auf den richtigen Weg der Gotteserkenntnis zu schicken, was durch den

32 GIORGI, De harmonia mundi (cit. Kap. XII); vgl. PERRONE COMPAGNI, Una fonte di Agrippa.
33 Est igitur homo expressissimum dei simulacrum[m], quando homo omnia in se continet, quae in deo sunt: sed deus per eminentiam quandam omnia continent, ut simpliciter, sicut omni castra et principium: hominum autem dedit viratem, ut similiter conf[er]necerit omnia, sed actu & compositione quadam, ut omnium nexus, unicum et unum. AGrippa, Occulta philosophia, 1533, 3.36., fol.285; vgl. GIORGI, De harmonia mundi 3.6.3., fol.587; 1.5.10., fol.91°, und PERREONE COMPAGNI, Una fonte di Agrippa, S.64. Die deutsche Übersetzung ist, mit gelegentlichen Korrekturen, zitiert nach HEINRICH CORNELIUS AGrippa VON NETTESHEIM, Die magischen Werke, Wiesbaden 1982.
34 Vgl. PICO, De hominis dignitate etc., Ed.Garin, S.304-306.
35 nec reperitur aliq[iu]m in ho[m][i][n][e], non ulla dispositione, in quo no[n] fulgeo aliq[iu]m diuinitatis: nec quicquaqu[ium] est in deo, quod ipsum non etiam[m] pretiosum[ur] in homine. Quia cum[que] igitur seipsum cognoverit, cognoscit in seipso omnia, cognoscit in primum deum[m], ad cuius imaginem[m] est: cognoscet mundum, cuius simulacrum[m] gerit: cognoscet creaturas omnes, cui[m] qu[eribus] symbol[m] habet: & quod fomenti à lapidibus, à plantis, ab animalibus, ab elementis, à coelis, à daemonibus, ab angelo, & ab unaquaque[m] re habère & impetrare possit [...]. AGrippa, Occulta philosophia, 1533, 3.36., fol.286; vgl. GIORGI, De harmonia mundi 3.6.1., fol.56° und 3.1.7., fol.7°.
Aufstieg durch die einzelnen Stufen der verschiedenen Kreaturen zum Schöpfergott selbst geschehe. Diese Formulierung, die nicht zufällig sowohl mit dem strukturellen Gerüst der Magie als auch mit dem der Mikrokosmosvorstellung übereinstimmt, erhält dann im besagten Kapitel über den Mikrokosmos einen klaren religiösen Sinn. Abermals durch ein Zitat aus Giorgis *Harmonia mundi* präzisiert Agrippa, welche Aufgabe dem magischen Aufstieg des Mikrokosmos zu Gott obliegt:

Wie der höhere Teil in uns niemals sündigt, niemals in das Böse willigt, immer dem Irrtum widerstrebt und zum Besten rät, so versenkt sich der untere Teil, die tierische Seele, stets in das Böse [...]. Der oberste Teil in uns wird niemals verbremmt, sondern unberührt von der Strafe seiner Gefährten kehrt er zu seinem Ursprungs zurück. Der Geist aber, der von Plotinus die vernünftige Seele genannt wird, der seiner Natur nach frei ist und nach Belieben beiden Teilen anhängen kann, wird, wenn er beständig dem oberen Teile anhängt, endlich mit ihm vereinigt und zu einem seligen Leben verkümmert, bis er in Gott aufgenommen wird [...].

36 AGrippa, Occulta philosophia, 1533, 3. proem., fol.209.
37 Sicut enim portio illa suprema nunqua[m] peccat, nunqua[m] malo consentit, semper[ue] errori resistit & ad optima hortatur: sic inferior illa portio & animalis anima, in malo [...] semper demergitur [...]. Mens igitur suprema portio nunquam damnatur, sed puniendis sociis illaesa abit ad suum originem: spiritus uero, quae rationalis anima à Plotino dicitur, cum sit natura sua liber, & uti[ue] ad libitum adhaerere potest, si superiori portioni constanter adhaerat, illi tandem unitur & beatificatur, donec adsumatur in deum [...]. Ebd., 3.36., fol.287; vgl. GIOrgI, De harmonia mundi 3.5.3., fol.531.

Der Mensch als das schönste und vollendetste Werk Gottes, als sein Ebenbild und als eine Welt im Kleinen, hat einen vollkommeneren und harmonischeren Körperbau als die übrigen Geschöpfe und enthält die Zahlen, Maße, Gewichte, Bewegungen, Elemente, kurz alles, was zu seiner Vollendung gehört, in sich [...]. Ja Gott selbst lehrte Noah seine Arche nach dem Maße des menschlichen Körpers bauen, sowie er selbst die ganze Weltmaschine gemäß dem menschlichen Körper symmetrisch gemacht hat; daher wird jene die große, dieser die kleine Welt genannt.34

38 Vgl. GIORGI, *De harmonia mundi* 3.1.7., fol.7r, dessen musikalische Metaphorik des Körpers Agrippa (zit. in Ann.35) ausläßt.
39 AGrippa, *Occulta philosophia*, 1533, 2.3., fols.102-103.

In den mathematischen Proportionen des Mikrokosmos wiederholt Agrippa an einer Stelle beinahe wörtlich den Text, der sich auch auf Leonardos venezianischer Zeichnung befinde:

wird nämlich zu sechs Palmen, der Fuß aber zu vier Palmen, und die Palme zu vier Zoll berechnet. Die gesamte Länge des Menschen [beträgt] sechs Fuß [...] [oder] sechsundneunzig Zoll.41

Eine Bemerkung über die Verkürzung des homo ad circulum beseitigt schließlich jeden Zweifel daran, daß Agrippa jene durch die Zeichnung in der Venezianischen Akademie überlieferten Proportionsstudien Leonards kannte:

Wenn bei dergestalt erhobenen Armen die Füße und Beine soweit auseinandergestellt werden, daß der Mensch um den vierzehnten Teil seiner aufrechten Stellung kürzer ist, so bildet die Entfernung seiner Füße unter sich und vom untersten Teile des Schambeines aus ein gleichzeitiges Dreieck, und wenn man den Mittelpunkt in den Nabel setzt, so wird die Peripherie eines Kreises die Finger- und Zehenspitzen berühren.42

Diese Bemerkung über den homo ad circulum ist nur in Leonards Studie zur Vitruvischen Proportionssfigur zu finden. Eine weitere Passage aus demselben Kapitel der Occulta philosophia verdeutlicht darüberhinaus, daß Agrippa nicht nur einen auf Leonardo zurückgehenden Text benutzt, sondern auch dessen Zeichnung eingehend studiert hatte:

Der Durchmesser der Weichen, der Raum zwischen der Handwurzel und dem Ellenbogengelenk, die Entfernung von der Brust aus zwischen beiden Brustwarzen aufwärts bis zu den Lippen und abwärts bis zum Nabel, der Raum zwischen beiden Knochenenden, welche am obersten Teile der Brust die Kehle umgeben, die Entfernung von der Perse bis zum Beginn der Wade und von da bis zum Kniegelenk, dies sind lauter gleiche Maße und betragen die siebenten Teil der ganzen Länge.43

Die meisten dieser Rationen lassen sich mit hinreichender Exaktheit der Zeichnung Leonards entnehmen. Dabei sind allerdings drei Werte ungenau, nämlich die beiden für die Entfernungen von der Brustmitte bis zu den Lippen und von der Wade bis zum Kniegelenk. Eklatant abweichend von der Zeichnung in Venedig ist die Angabe, daß die Distanz zwischen den beiden Knochenenden unterhalb der Kehle 1/7 betrage; sie kann dort nämlich eindeutig als 1/8 identifiziert werden. In Anbetracht dieser offensichtlichen Verbindungen zwischen Leonardo und Agrippa dürfte es auch kein Zufall sein, daß die

41 Circuitus ho[m][n]is sub alis, mediate[m]e suae co[n][n]et lo[n][n]igitudinis, cuius mediu[m] est in imo pectine: abinde vero sursum ad mediu[m]e pectus inter utraque[m]e mamillas & à medio pectore in summum[m]e urtic[t][e] pars: pars ho[m][n]is quarta. Eade[m]s est latitudo spatii[m]e ab uno extremo in alterum: eade[m] est longitudo à cubito in extremu[m]e longioris digitii, ideo[m]e hic cubitus dici[t]: hinc quatuor cubiti constituunt longitudin[u]m hominis: latitudine[m]e uero quae in spatii[s] est, cubitus unus: quae uero in circuitu est, pes unus, cubitum autem constituunt palmi sex: pedem uero quattuor, & quatuor digitii palmum, tota[m]e hominis lo[n][n]igitiu[m]e palmorum uigintiquatern, pedem sex, [...] digitorum sex & nonaginta. AGRIPPA, Occulta philosophia, 1533, 2,27., fol.166; zu entsprechenden Text Leonards vgl. RICHTER, Literary Works of Leonardo, Bd.1, S.255-256, bes. Zeile 2-4 und 10-14 (zit. Kap. V).

43 Deni[q]e cincturae diametric, & quod à restricta manus usq[e] in interiorem plicaturem cubiti spatium est: & quod à pectore usq[e] ad utrasq[u]e mamillas sursum ad suprema labra, siue deorsum usque ad umbilicum est, quod[q]e est inter extrema ossium suprême pectoris gula[m]e cingentiam, & quod à planta pedis ad fine[m]e laceri, & exinde in mediam genu rotulam, omnes hae me[n]surae sibi coaequales sunt, & septima[m]e totius altitudinis constitui[n]t. AGRIPPA, Occulta philosophia, 1533, 2,27., fol.166-167.
Beistellungen der in den Text eingefügten Illustrationen denjenigen der venezianischen Zeichnung entsprechen.44

5. Agrippa und Leonardo

Es sind noch zwei weitere Quellen aus dem 16. Jahrhundert bekannt, deren Angaben zu den Proportionen des menschlichen Körpers auf Leonarodos Vitruvstudie zurückgehen, nämlich A. M. Venustis Bemerkungen über die menschlichen Proportionen in seinem 1562 erschienenen Discorso generale45 und ein Passus in Guglielmo della Portas Düsseldorfer Skizzenbuch.46 Letzterer hat die infragekommenden Proportionsstudien aus Agrippas Occulta philosophia abgeschrieben; Venusti hingegen muß zumindest mittelbar Zugang zu Materialien Leonarados gehabt haben, denn er zitiert in Bezug auf seinen Gewährsmann Gerolamo Figino Abschnitte, die eindeutig wörtlich mit dem Text der Zeichnung Leonarados übereinstimmen47, andernfalls aber Angaben enthalten, die, wie im Falle Agrippas, von ihr geringfügige Abweichungen aufweisen:

Der Durchmesser der Weichen, die Distanz von der Brust (poppa) bis zu den Weichen, vom Handgelenk bis zum Ellenbogengelenk, von den Brustwarzen bis zum Nabel, von einem zum anderen Ende jenes obersten Knochens, der die Kehle umgibt, von der Höhe der Brust bis zum Haarsansatz und von der Hüfte bis zum Ansatz des männlichen Gliedes ist der siebte Teil der Länge des Menschen.48

44 Vgl. jeweils den linken Fuß der Figuren Agrippas, ebd., fols.159, 161 und 163, mit der Zeichnung Leonarodos; vgl. auch NOWOTHNY, Agrippa, S.435.

48 Il diametro della cintura, la distanza dalla poppa al fianco, dalla piegatura della mano alla piegatura di dentro al braccio, dalle punte delle mammelle all’omblicho, dall’una e l’altra estremità delle ultime ossa del petto che cingono la gola, dalla cima del petto al nascimento de’ capelli, dal fianco al nascimento del membro virile, è la settima parte della lunghezza dell’uomo. VENUSTI, Discorso, S.107-108, zit. nach PEDRETTI, Commentary, Bd.1, S.247.

Drei Indizien in der Occulta philosophia bestätigen diese Vermutung.

1. Agrippas Beschreibung der vierten Illustration des Mikrokosmos, deren figürliche Disposition Cesarianos Comasker Vitruv von 1521 verpflichtet ist, würde eher auf eine der Bewegungsfiguren im Codex Huygens passen als auf den darunter befindlichen Holzschnitt in der Kölner Ausgabe der Occulta philosophia:

 Wenn die unbewegten Füße auf solche Weise rechts und links zu beiden Seiten ausgestreckt und die Hände bis zur Scheitelhöhe erhoben werden, dann werden die extremen Glieder der Füße und Hände ein gleichseitiges Quadrat abgeben, dessen Zentrum über dem Nabel in der Gürtung des Körpers ist.

 Mit hinreichender Genauigkeit entspricht dies weder der venezianischen Zeichnung Leonardo's noch der entsprechenden Illustration in der Occulta philosophia, sondern exakt dem etwas abgewandelten homo ad quadratum auf folio 7 des Codex Huygens.

3. Möglicherweise geht Agrippas Mikrokosmos im Pentagon auf dieselbe Quelle zurück wie folio 7 des Codex Huygens, denn vor 1533 ist keine andere Darstellung dieser Art bekannt. Außerdem wird das Pentagon im Codex Huygens und in Agrippas Holzschnitt auf sehr ähnliche Weise gebildet, während andererseits die Details der Finger und Füße in Agrippas Figur mit deren Anordnung in Leonardo's Zeichnung in Venedig übereinstimmen. Agrippas Text bezieht sich zudem auf ein gleichseitiges Dreieck, das vom

51 Quod si immotis talis pedes dextrorum sinistrorumque in utroque latus protrantur, & manus ad capitis lineam elecentur, ipsi tunc extremiti pedem manuumque digitu sequiuntur quadratum dabant, cuius centrum supra umbilicus est in cinctura corporis. AGRIPPA, Occulta philosophia, 1533, 2.27., fol.164.

Nabel und den Fersen gebildet wird, sich aber nicht im dazugehörigen Holzschnitt wiederfindet, sondern auf folio 7 des Codex Huygens.54

Da sich Agrippa zur selben Zeit in Oberitalien aufhielt wie Leonardo, besteht durchaus die Möglichkeit, daß er das in der *Occulta philosophia* verwendete Material zur Proportionslehre von ihrem Urheber selbst mitgeteilt bekommen hatte. Dies könnte entweder in Pavia oder aber in Mailand zwischen 1512 und 1516 geschehen sein.55 Ein späterer Zeitpunkt, etwa 1518, als Agrippa in Metz und Leonardo in Fontainebleau weilte, ist unwahrscheinlich. Allerdings gibt es keinen stichhaltigen Nachweis für ein solches Zusammentreffen.

6. Agrippa und Francesco Giorgi

57 Vgl. GIORGI, De harmonia mundi 3, fol.1f.

Agrippa integrierte also in sein seit 1510 bestehendes Konzept der Magie Material, das er über den Zeitraum verschiedener Jahre gesammelt hatte. Ab 1525, als Giorgis *Harmonia mundi* erschien, konnte er die ihm bereits vorliegenden und auf Leonardo zurückgehenden Proportionsstudien mit jenen Anschauungen verbinden. Da sich Agrippa noch 1527 über die völlig

59 Vgl. AGrippa, Occulta philosophia, 1533, 2.27., fol.169, Zeile 29-34 mit GiorGI, De harmonia mundi 1.6.3., fol.1017, Zeile 12-16 und 18-19.

7. Agrippa und Vitruv

60 AGRIPPA, Occulta philosophia, 1533, 1.6., fol.7; LACTANTIUS, Divinarum institutionum libri septem 1.5., PL 6, Sp.133.
61 H. C. AGRIPPA VON NETTESHEIM, De incertitudine et vanitate scientiarum et artium, Antwerpen 1531, fol.41r-v (d.i. Kap. 28).
62 Vgl. CATO, De agri cultura 14-18.
63 Vgl. THEOPHRASTUS, Historia plantarum 5.5-5.7.
64 Vgl. VARRO, De re rustica 11-13.
Bühnendekoration und Perspektive gehandelt hatten. Das Mißverständnis, die drei letztgenannten Autoren als Architekturschriftsteller einzuordnen, geht auf eine zu flüchtige Lektüre des Textes zurück. Vitruv kündigt nämlich in seinem entsprechenden Absatz an, einige seiner Quellen preiszugeben; dabei beginnt er mit Bühnenauteuren und solchen, die über Bühnendekorationen geschrieben haben. Erst dann, weiter unten, erwähnt er tatsächlich insgesamt zweitundzwanzig Architekturschriftsteller, von denen Agrippa lediglich den ersten, nämlich Silenus wahrnimmt.

Agrippas Quelle für seine Ausführungen zur Architektur war also Alberti, und wo er Vitruv tatsächlich zu Rate zog, hatte er ihn nur sehr oberflächlich eingesesehen. Dieser Umstand bestätigt auch den Verdacht, daß Agrippa Vitrus Proportionsfiguren lediglich aus zweiter Hand kannte. Das mangelnde Interesse für Architektur, deutlich ablesbar an Agrippas Irrtümern hinsichtlich der vermeintlich über sie schreibenden Autoren, würde schließlich auch erklären, warum er Vitruvs De architeta nur sehr flüchtig wahrgenommen hat und dessen Proportionsfigur aus anderen Quellen kannte.

8. Zusammenfassung

Ein wesentlicher Bestandteil der Occulta philosophia von 1533 ist die Interpretation der Mikrokosmosidee. Sie ergibt sich teilweise aus Agrippas in Italien gewonnenen Anregungen, ist aber in größerem Umfange dem Ansatz Francesco Giorgis verpflichtet. Agrippa nimmt eine dort bereits angedeutete Teilung des Mikrokosmos vor, um so dessen mathematisch-astrologische Formulierung als intermediäres und dessen hermetisches Variante als erfülltes Stadium seiner Magie zu verwenden. Die daraus folgende selbständige und originelle Weiterentwicklung der üblichen Mikrokosmosvorstellungen und ihrer

66 Vgl. VITRUV, De architectura 7.prooem.11-12.
67 Vgl. De incertitudine usw., fol.41v, und LEON BATTISTA ALBERTI, De re aedificatoria, Florenz 1485 (Nachdruck München 1975), 5.6., fol.75v, Zeile 12; LEON BATTISTA ALBERTI, Zehn Bücher über die Baukunst, Leipzig 1912, übers. v. Max Theuer, S.615, Anm.5.
SCHLUSS

1. Folgerungen

Angesichts der architekturtheoretischen Erörterungen Vitruvs und in Anbetracht ihrer baupraktischen Grundlagen sind die heute üblichen Deutungen der in De architectura beschriebenen Proportionsfigur unzureichend. Besonders ihr symbolisches Verständnis - im Sinne einer seit Aby Warburg entwickelten Bedeutungsforschung - führte zu Interpretationen, deren genereller Charakter den einzelnen Erörterungen des homo ad quadratum und des homo ad circulum in verschiedenen historischen Epochen nicht gerecht wird und letztlich zu einer der folgenreichsten Fehlkonzeptionen der Architekturge schichtsschreibung geführt hat. Dieser Effekt erstreckte sich nicht nur auf das Mittelalter, dessen bislang in diesem Zusammenhang diskutierte Quellenschriften keine verifizierbaren Grundlagen für eine nennenswerte Bedeutung von Vitruv überhaupt enthalten, sondern auch auf die frühe Neuzeit.

Eine symbolische Interpretation des homo vitruvianus und die Annahme einer mit ihm verbundenen metaphysischen Proportionslehre verunklart den Charakter anthropomorpher Veranschaulichungen, deren Ursprung sowohl technologischer und praktischer als auch naturphilosophischer oder metaphysischer Art gewesen sein konnte; diese Veranschaulichungen gehörten vor der Einführung geomorpher Meßkunde zum kulturgeschichtlich bisher wenig erörterten anthropomorphen Alltag. Hierin fand der homo vitruvianus ebenso seinen Platz wie andere Figuren, die unabhängig von jenem existiert haben konnten. Eine »symbolische« Verbindung verschiedener anthropomorpher Veranschaulichungen - wie im Fall der Atlaskarikaturen und ihrer Verwechslung mit Vitruvs homo ad circulum - zeitigte in der bisherigen Forschung irreführende Ergebnisse.

Die in den Traktaten Francesco di Giorgio Martinis angelegte Ambivalenz zwischen Theorie und Praxis, zwischen der Verarbeitung akademischer Bildung

2. Ausblick

3. In ähnlicher Weise aber müssen auch die Glieder der Tempel eine Symmetrie haben, die von ihren einzelnen Teilen her der Gesamtsumme der ganzen Größe genau entspricht. Ferner ist natürlich die Mittelpunkt des Körpers der Nabel. Liegt nämlich ein Mensch mit gespreizten Armen und Beinen auf dem Rücken, und setzt man die Zirkelspitze an der Stelle des Nabels einen und schlägt einen Kreis, dann werden von dem Kreis die Fingerspitzen beider Hände und die Zehenspitzen berührt. Ebenso wie sich am Körper ein Kreis ergibt, wird sich auch die Figur des Quadrats an ihm finden. Wenn man nämlich von den Fußsohlen bis zum Scheitel Maß nimmt und wendet dieses Maß auf die
ausgestreckten Hände an, so wird sich die gleiche Breite und Höhe ergeben, wie bei Flächen, die nach dem Winkelmaß quadratisch angelegt sind.

5. Ebenso hat man die Maßberechnungen, die bei allen Bauwerken notwendig zu sein scheinen, von den Gliedern des Körpers entlehnt, wie Finger (Zoll), Palm (Händefläche), Fuß, Elle, und sie haben diese Maße auf eine vollkommene Zahl, die die Griechen »teleone« nennen, verteilt. Als vollkommene Zahl aber haben die Alten die Zahl 10 bestimmt, denn sie ist an den Händen durch die Zahl der Finger gefunden. Wenn aber aufgrund der Finger an beiden Händen 10 von Natur aus vollkommen ist, so glaubte auch Plato, diese Zahl sei deshalb vollkommen, weil die Zehnheit aus Einheiten hervorgeht, die die Griechen »Monaden« nennen. [...]

6. Die Mathematiker jedoch behaupteten im Widerspruch dazu, vollkommen sei die Zahl 6, weil sie Einteilungen aufweist, die ihrem Rechnungssystem, das auf der Zahl 6 beruht, entsprechen [...].

7. Nicht weniger haben sie auch deshalb die Zahl 6 zur vollkommensten Zahl erklärt, weil der Fuß des Menschen der sechste Teil der Höhe ist (folglich auch die 6 eine vollkommene Zahl dadurch wird, daß sie durch eine Zahl von Fuß (nämlich 6 mal 1 Fuß) die Körpergröße begrenzt hat), und weil sie bemerkt haben, daß auch die Elle aus 6 Palm (Handbreiten) und 24 Fingerbreiten (Zoll) besteht. [...]

4. Ergo si ita natura compositus corpus hominis, uti proportionibus membra ad summam figurationem eius respondeant, cum causa constituisse videntur antiqui, ut etiam in operum perfectionibus singularum membrorum ad universam figurae speciem habent commensus exactionem. Igitur cum in omnibus operibus ordinis tradurent, maxime in aedibus deorum, <quod eorum> operum et laudes et culpae æsternae solent permanere.

5. Nec minus mensuraru rationes, quae in omnibus operibus videntur necessariae esse, ex corporis membris collegerunt, uti digitum, palmum, pedem, cubitum, et eas distribuerunt in perfectum numerum, quem Graeci τελεον dicunt. Perfectum autem antiqui instituerunt numerum, qui decem dicitur; namque ex manibus digitorum numero [ab palmo pes] est inventus. Si autem in urisque palmis ex articulis ab natura decem sunt perfecti, ctiam Platoni placuit, esse eum numerum ea re perfectum, quod ex singularibus rebus, quae μοναδές apud Graecos dicuntur, perfectior decussis. [...]

6. Mathematici vero contra disputantes ea re perfectum dixerunt esse numerum, qui sex dicitur, quod is numerus habet partitiones eorum rationibus sex numero convenientes [...].

7. Non minus etiam, quod pes hominis alitudinis sextam habet partem - ita etiam perfectius ex eo, quod pedum numero, sexies, corporis alitudines terminavit - cum perfectum constituerunt, cubitumque animadvertent ex sex palmis constare digitisque XXIII. [...]
9. Wenn man sich also darüber einig ist, daß die Zahlenordnung von den Gliedern des Menschen hergeleitet ist und daß zwischen den einzelnen Gliedern und der Gesamterscheinung des Körpers eine entsprechende, auf einem Grundmaß (modulus) beruhende Symmetrie besteht, bleibt nur übrig, daß wir denjenigen Anerkennung zollen, die beim Bau der Tempel der unsterblichen Götter die Glieder ihrer Bauwerke so geordnet haben, daß mit Hilfe von Proportion und Symmetrie deren Gliederungen im Einzelnen wie im Ganzen zu einander passend geschaffen wurden.

9. Ergo si convenit ex articulis hominis numerum inventum esse et ex membris separatis ad universam corporis speciem raetae partis commensus fieri responsum, relinquitur, ut suspiciamus eos, qui etiam aedes deorum immortalium constituentes ita membra operum ordinaverunt, ut proportionibus et symmetris separatae atque universae convenientes efficerentur eorum distributiones.
APPENDIX 2

GRIECHISCHE UND RÖMISCHE METROLOGIE

<table>
<thead>
<tr>
<th>VITRUV</th>
<th>DIGITI</th>
<th>BRÜCHE</th>
<th>GRIECHISCH</th>
<th>DEUTSCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>homo</td>
<td>96</td>
<td>1/1</td>
<td>δρυμιά</td>
<td>Klaffel</td>
</tr>
<tr>
<td>cubitus</td>
<td>24</td>
<td>1/4</td>
<td>πηζευς</td>
<td>Elle</td>
</tr>
<tr>
<td>---</td>
<td>20</td>
<td>5/24</td>
<td>πυχόν</td>
<td>Ellbogengelenk bis erstes Fingerglied</td>
</tr>
<tr>
<td>---</td>
<td>18</td>
<td>3/16</td>
<td>πυγή</td>
<td>Ellbogengelenk bis Fingeransatz</td>
</tr>
<tr>
<td>pes</td>
<td>16</td>
<td>1/6</td>
<td>πους</td>
<td>Fuß</td>
</tr>
<tr>
<td>caput</td>
<td>12</td>
<td>1/8</td>
<td>σπιδόμη</td>
<td>große Spanne</td>
</tr>
<tr>
<td>facies*</td>
<td>11</td>
<td>11/96 = 1/8,7</td>
<td>ὀρθόδοφον</td>
<td>aufrechte Hand</td>
</tr>
<tr>
<td>---</td>
<td>10</td>
<td>5/48 = 1/9,6</td>
<td>λυχάς</td>
<td>Spanne zwischen Zeigefinger und Daumen</td>
</tr>
<tr>
<td>---</td>
<td>8</td>
<td>1/12</td>
<td>διχάς</td>
<td>zwei Querhände</td>
</tr>
<tr>
<td>palmus</td>
<td>4</td>
<td>4/24</td>
<td>καλαιστή</td>
<td>Querhand</td>
</tr>
<tr>
<td>---</td>
<td>2</td>
<td>1/48</td>
<td>κύνδυλος</td>
<td>zwei Fingerbreiten</td>
</tr>
<tr>
<td>digitus</td>
<td>1</td>
<td>1/96</td>
<td>δάκτυλος</td>
<td>Fingerbreite</td>
</tr>
</tbody>
</table>

manus pansa ab articulo ad extremum medium digitum
APPENDIX 3

VITRUV IN SPÄTANTIKE UND MITTELALTER

PLINIUS (23/24-79 v. Chr.), Historia naturalis 16; 31; 33; 35; und 36. Vgl. die Konkordanz bei D. Delelese, Vitruv als Quelle des Plinius, in: Philologus 31.1872, S.385-434 (Vitruv 2.3.; 2.8.; 2.9.; 7.10.; 7.11.; 8.1.; 8.5.; 8.7. und 8.9.).

SERVIIUS GRAMMATICUS (um 400?), In Vergilii carmina commentarii 6.43., Ed. Thilo/Hagen, Bd.2, S.12-13 (Vitruv 4.6.1.).

CASSIODORUS SENATOR (ca.490-580), Variarum libri XII 3.53. Corpus Christianorum. Series latina Bd.96, S.138 (Vitruv 8.1.1.; 8.1.3. und 8.1.5.).

ISIDOR VON SEVILLA (560-636), Etymologiarum libri XX 17.7.32. und 17.7.33. PL82, Sp.614-615 (Vitruv 2.9.13.).

ALKUIN (ca.730-804), Epistola 308, Monumenta Germaniae Historica. Epistoleae Bd.4, Berlin 1899, S.472 (Vitruv 2.9.2.).

EINHARD (ca.770-840), Epistola 57. Monumenta Germaniae Historica. Epistoleae 5., Berlin 1899, S.137-138 (Vitruv 1.2.2.).

[ANONYMUS], Bibliothèque de Valenciennes, Ms. Nr. 337 (9.Jahrhundert). Vgl. V. Mortet, La mesure et les proportions de colonnes antiques d’après quelques compilations et commentaires antérieurs au XIe siècle, in: Bibliothèque de l’école des chartes 59.1898, S.56-72 (Vitruv 3.3.10. und 3.3.12.; 3.5.5-8. und 6.2.2.).

[ANONYMUS], »Corpus hominis ita natura compositum [..]«, Schlettstadt, Bibliothèque municipale, Ms.1153bis, fol.37r, auszugsweise veröffentlicht bei K. A. Wirth, Bemerkungen zum Nachleben Vitruvs im 9. und 10. Jahrhundert und zu dem Schlettstädter Vitruv-Codex, in: Kunstchronik 20.1967, S.281-291 und S.293-296 (Abb.) (Vitruv 3.1.2-3.; 3.3.11.; 3.5.1-3. und 3.5.5-8.).

HUGO VON ST. VICTOR (ca.1097-1141) Didascaliaon 3.2. PL176, Sp.766C.

GUILLAUME DE SAINT-THIERRY (ca.1100- vor 1153), De natura corporis et animae 1. PL180, Sp.7088 (Vitriv 3.1.3.).

ALBERT DER GROSSE (ca.1200-1280), Postilla super Isaiam 16.7. Alberti magni opera omnia, Ed. F. Siepmann, Bd.19, Köln 1952, S.224 (Vitriv 2.4.4.?).

ALBERT DER GROSSE, De natura loci 3.2. Alberti magni opera omnia, Ed. P. Hossfeld, Bd.5.2, Köln 1980, S.27 (Vitriv 6.1.).

THOMAS VON AQUIN (1225/26-1274), De regimen principum 2.2. W. A. Eden, St.Thomas Aquinas and Vitruvius, in: Mediaeval and Renaissance Studies 2.1950, S.183-185 (Vitriv 1.4.1., 1.4.11. und 2.prooem.3.).

ZWEIFEHLHAFTE NACHWEISE

CASSIODORUS SENATOR, Variarum libri XII 4.51. Vgl. Heitz, Vitruve, S.726 (Vitruv S.?).

Libri de celo & mundo Aristotelis cum expositione Sancti Thome de aquino. & cum additione Petri de aluernia. Venedig 1495, fol.31v [IB 22926B].

Diui Thome Aquinatis [...] in libros Aristotelis de celo & mundo cu[m]ento Petri de aluernia [...], Venedig 1495, fol.30v [IB 21105].

Arist[otelis] De celo & mundo cum Auerrois Cordubensis expositionibus, Venedig 1495, fol.200r-v [IB 21097].

Thomae Aquinatis in libro de coelo & mundo Aristotelis s[n]otationibus textu[m] & co[m]ento[n]u[m] Auerrois [...] in marginibus ornatis ac cum additio[nibus] Petri aluerniatis, Venedig 1506, fol.39f [519 i 26].

Auerrois in quatuor de celo & mundo libros paraphrasis [...] de hebraicis latebris in latinum splendorem converta [...] Mailand 1511 [715 i 1].

Hyginii hysteriographi et philosophi [...] libri quattuor [...], Paris 1517 [1395 g 28].

Gregor Reisch, Margarita philosophica [...] ab Orontio Fino Delphinate castigata & aucta [...], Basel 1535, S.522.

Aristotelis Opera cum Averrois commentariis, Bd.5, Venedig 1562 (Nachdruck Frankfurt 1962), c.102D, 102H und 104A.

Thome Aquinatis in libros Aristotelis De celo & mundo commentaria: cu[m] adnotationibus textuum & co[m]ento[n]u[m] Auerrois [...], Venedig 1537, fol.36v [1565/165].

S.Thomae Aquinatis in quatuor libros Aristotelis de coelo, et mundo commentaria: quae absolvit Petrus de Aluernia [...], Venedig 1562, fol.161 [29 f 4(2)].

Lucill Philalthaei [...] in IIII. libros Aristotelis De coelo, & mundo, commentariij [...], Venedig 1565, fols. 250, 502 und 547 [520 i 15].
APPENDIX 5

GUILLAUME PHILANDRIER

NIKOLAS BRISSEAEUS (Hrsg.), Terentiani mauri [...] de liüris, syllabis, pedibus et metris tractatus, Paris 1531, c.ixf.

JEAN MARTIN (Hrsg. und Überz.), Architecture ou art de bien bastir, de Marc Vitruve Pollion, Paris 1547, fol.Aii.

WALTER RIFF, Vitruvius Teutsch, Nürnberg 1548, fol.A3v.

GIROLAMO MERCURIALE, De arte gymnastica, Venedig 1569, Lib.1, cap.8 und cap.11 (i.d. Ausgabe Amsterdam 1672, S.31 und S.63).

GIROLAMO CARDANO, De propria vita liber, in: Opera omnia, Lyon 1663, Bd.1., S.17.

CONRAD GESNER, Bibliotheca instituto et collecta, Zürich 1583, S.309.

SUÉVLE DE SAINT-MARTHE, Gallorum doctrina illustrium [...] elogias, Poitiers 1602, S.132-133.

HENRY WOTTON, The Elements of Architecture, London 1624, Preface c.3v und S.44.

PIERRE FRISON, Gallia purpurea, Paris 1638, fol.604.

GERHARD JOHANN VOSS, De universae mathesios natura & constitutione liber, Amsterdam 1660, S.300.

PHILIBERT DE LA MARE, De vita, moribus et scriptis Guillelmi Philandri Castilionii [...], O.O. 1667.

antoine tesieller, Les éloges des hommes savans tirez de l'histoire de M. de Thou, Genf 1683, Bd.1, S.372-373.

DANIEL GEORG MORHOF, Polyhistor, Lübeck 1688 (benutzt in der Ausgabe Lübeck 1747, Bd.1, S.871-872).

ADRIEN BAILLET, Jugemens des savans sur les principaux ouvrages des auteurs, Paris 1722, Bd.2, S.300.

JOHANN NICOLAUS FUNCK, De virili aetate latinae linguae tractatus, Marburg 1727-1730, Teil 2, S.303.

ABBÉ PAPILLON, Bibliothèque des auteurs de Bourgogne, Bd.2, Dyon 1742, S.148-151.

APPENDIX 6

ANDERE FIGUREN

MARSILIO FICINO, Über die Liebe oder Platons Gastmahl. Übersetzt von Carl Paul Hasse. Herausgegeben und eingeleitet von Paul Richard Blum, Hamburg 1984, S.154-155 (d.i. 5.6.).

LODOVICO CELIO RICCHIERI, Lectionum antiquarvm libri XXX, Basel 1542 (zuerst 1516), 3.21, S.93-94.

GEOFRY HORTON, Champfleury, Paris 1529, fols.16v-19r und fol.46v.

JOHANNES HOST VON ROMBERCH, Congestiorum arteificiosae memoriae, Venedig 1533, c.28r-v.

AGNOLO FIRENZUOLA, Delle bellezze delle donne (1541), in: Opere di messer Agnolo Firenzola Fiorentino, 3Bde., Florenz 1763, Bd.1, S.276.

NICCOLO FRANCO, Dialogo dove si ragiona delle bellezze, Venedig 1542, c.23r-v.

LODOVICO DOLCE, Dialogo [...] del modo di accrescere & conservar la memoria, Venedig 1562, c.27r-v.

JOHANNES PISTORIUS, Microcosmus seu liber Cephale anatomicus de proportione utriusque mundi, Lyon 1612, prooem. und S.4.

VINCENZO SCAMOZZI, Idea della architettvrva vniversale, 2Bde., Venedig 1615, Bd.1, fol.38.

HELKIAH CROOKE, ΜΙΚΡΟΚΟΣΜΟΓΡΑΦΙΑ. A Description of Man, London 1615, S.5.

ROBERT FLUDD, Utriusque cosmi maioris scilicet et minoris metaphysica, physica atque technica historia, 5 Teile, 3Bde., Oppenheim 1617-1621, Bd.2 (1619), 1.1.5., S.97-121, bes. S.112 und S.114-115.

VIOLA ZANINI, GIOSEFFE: Della architettura, Padua 1629, S.493-496.

JOHANNES SCHEFFER, Graphice id est de arte pingendi liber singularis, Nürnberg 1669, c.1.

PIERO VALERIANO, Hieroglyphica, Frankfurt 1678, S.599.

JOHANN SIGMUND ELSHOLTZ, Anthropometrie oder Meß-Kunst des menschlichen Körpers, Nürnberg 1695, S.484-500.

JOHANNES ZAHN, Specula physico-mathematico-historica notabilium ac mirabilium sciendorum, in qua mundi mirabilis oeconomia proponitur, Nürnberg 1696, fols.45-53.
APPENDIX 7

PIETRO ANTONIO BARCA,
Avvertimenti e regole circa L’Architettura Civile,
Scultura, Pittura, Prospettiva,
et Architettura Militare per offesa, e Difesa di Fortezze,
Malland 1620, c.4r

Nachdem der große und höchste Gott, der erhabene Architekt, Himmel und Erde nach Gewicht, Zahl und Maß geschaffen und dem Gewicht die Materie, der Zahl die Vielfalt der Materie und dem Maß die bestimmte Größe (grandezza) - also in der Form, die rund ist, wie die vollkommenste der anderen - gegeben hat, und nachdem er die Wirkungskraft gegeben hat den Himmeln, die sich - wie man sieht - mit so erstaunlicher und bewundernswürdiger Bewegung innerhalb dieses weltlichen Gerüst (machina) - das selbst auch von runder Form ist und als Zentrum jener Himmel unbewegt ruht - herumdrehen: schuf er als Abbild derselben Welt den Menschen, der daher von den Philosophen Mikrokosmos, kleine Welt, genannt wird. Denn der Mensch formt eine runde Figur, wenn er die Beine und Arme ausstreckt und der Zirkel im Nabel eingestellt wird. Die Knochen sind die Berge, die Venen die Flüsse, das Fleisch ist die Erde und der Bauch das Meer, das das Wasser aufnimmt und spendet. Und ebenso wie man in allen Teilen der Welt Wasser findet, so findet man in allen Teilen des Menschen Blut, so daß - wie gesagt wurde - der Mensch eine kleine Welt ist. Darüber hinaus lehrte Gott Noah, die Arche nach den Proportionen des Menschen zu bauen, also 300 Ellen lang, 50 breit und 30 hoch. Und so ist der Mensch über der Brust den sechsten Teil seiner Länge breit und in den Weichen davon [d.i. von einem Sechstel] drei Fünftel hoch. Von daher betrachteten die Alten - wie gesagt wurde - den Menschen als von Gott geschaffenes Gleichnis der Welt. Und mit so viel schöner Ordnung und Proportion haben auch sie die Architektur nach dem Bild des Menschens begründet, indem sie den Tempeln und anderen Bauten nach dessen Proportion die Form gaben.

Il grande IDDIO Supremo, & Eccelso Architetto hauendo creato i Cieli, e la Terra, con peso, numero, e misura; dando al peso la materia, al numero la diversità della materia, alla misura la grandezza, º sia forma, qual è circolare, come la più perfetta dell’altra, & hauendo dato virtù à i Cieli, che girano come si vede con si stupendo, e mirabil moto intorno à questa machina mondiale, quale anch’essa è di figura sferica, come centro di essi Cieli immobile risiede; creò l’huomo quasi ritratto dell’istesso Mondo, che però è detto da Filosofi Microcosmos, cioè Mondo piccolo, poiche l’huomo allargando le gambe, e le braccia, e ponendo il compasso nell’ombelico, forma la figura tonda, la carne è la Terra, le ossa sono li Monti, le vene i Fiumi, il ventre il Mare, che le acqua receue, e manda; e sicome in tutte le parti del Mondo si trova acqua, in tutte le parti dell’huomo si troua sangue. Si che come è detto, l’huomo è vn piccio1 Mondo. Di più IDDIO insegnò à Noè à fabricare l’Arca à propozione dell’huomo, cioè lunga Cubiti 300. larga 50. alta 30. e così l’huomo è largo nel petto la sesta parte della longhezza, & in fianco alto li è tre quinti. Quindi è che gli Antichi vedendo l’huomo creato da Dio à comparazione del Mondo, come è detto, e con tanto dell’ordine, e propozzione, anch’essi à similitudine dell’huomo hanno fondato l’Architettura, dando la forma à Tempij, & altre fabrice à propozzione di quello.

AGRICOLA, RUDOLF: De inventione dialectica, Köln 1523 (Nachdruck Frankfurt/M. 1967).

AGrippa von NETTESHEIM, HEINRICH CORNELIUS: De incertitudine et vanitate scientiarum et arciun, Antwerpen 1530.

AGrippa von NETTESHEIM, HEINRICH CORNELIUS: De incertitudine et vanitate scientiarum et arciun, Antwerpen 1531.

AGrippa von NETTESHEIM, HEINRICH CORNELIUS: Opera, 2Bde., Lyon o.J. [ca. 1630].

Agrippa: siehe auch Zambelli.

ALANUS AB INSULIS: Theologicae regulae, PL 210, Sp.617-684.

ALBERT VON SACHSEN: Tractus proportionum, Padua 1482.

ALBERTI, LEON BATTISTA: De re aedificatoria, Florenz 1485 (Nachdruck München 1975).

ALBERTI, LEON BATTISTA: Zehn Bücher über die Baukunst, übersetzt von Max Theuer, Leipzig 1912.

Alberti, Leon Battista: siehe auch Bartoli.

ALIGHISI DA CARPI, GALASSO: Delle fortificazioni, Venedig 1570.

ANDROUET DU CERCEAU, JACQUES: De architectura opus, Paris 1559.

APOLLONIUS RHODIUS: Argonautica.

Aquín, Thomas von: siehe Thomas.

Architecture of Manasara: siehe Manasara.

Architettura e utopia nella Venezia del Cinquecento a cura di Lionello Puppi, Mailand 1980.

ARISTOPHANES: Nubes.

ARISTOTELES: Analytica posteriora.

ARISTOTELES: De anima.

ARISTOTELES: De coelo; siehe auch Appendix 4.

ARISTOTELES: Ethica Nicomachea.

ARISTOTELES: Libro de celo & mundo cum expositione Sancti Thomae de aquino, & cum additione Petri de aluernia, Venedig 1495.

ARISTOTELES: Metaphysica.

ARISTOTELES: Physica.

ARISTOTELES: Politica.

AUGUSTINUS: De civitate Dei, PL41.

AUGUSTINUS: De trinitate, PL42, Sp.819-1018.

Averroes: siehe Appendix 4.

BACCILIERI, TIBERIO: Lectura in tres libros de anima et in tractatum Averrois de substantia [...] Pavia 1508.

Balliet: siehe Appendix 5.

BALDI, BERNHARDINO: [Vita di Luca Pacioli], in: Boncompagni, Intorno alle vite, S.421-427.

BARBARO, DANIELE: I dieci libri dell’architettura di M.Vitruvio, Venedig 1556.

BARBARO, DANIELE: I dieci libri dell’architettura di M.Vitruvio, Venedig 1567.

BARBARO, DANIELE: La pratica della perspettiva, Venedig 1569 (Nachdruck Bologna 1980).

BARBARO, DANIELE: M.VitrwiiiPollionis de architectura libri decem, Venedig 1567.

BARBARO, ERMOLAO: Compendium ethicorum librorum, Paris 1546.

BARONI, C.: Documenti per la storia dell’architettura a Milano nel Rinascimento e nel Barocco, Bd.1, Florenz 1940, S.110-111.
BARTHOLOMAEUS ANGLICUS: De proprietatis rerum, Frankfurt 1601.
BARTOLI, COSIMO: L’Architettura di Leon Battista Alberti tradotta in lingua Fiorentina, Venedig 1565.
Becker: siehe Thieme/Becker.
BEDA VENERABILIS: De templo Salomonis, PL91, Sp.735-808.
Bellini: siehe Tommaso/Bellini.
Belting: siehe auch Kunstgeschichte.
Bernard von Chartres: siehe Jeannecau.
Beseler: siehe Roggenkamp/Beseler.
Biblia Sacra, Rom/Tournai/Paris 1956.
Bing: siehe Saxl/Bing.
Biographie universelle ancienne et moderne, 45Bde., Paris/Leipzig o.D.
Bischoff: siehe auch Anecdota.
BOETHIUS: De institutione arithmetica; siehe auch Masi.
BOETHIUS: De institutione musica.
BOVELLES, CHARLES DE: Geometrie pratique, Paris 1549 (zuerst 1542).
Bradwardine: siehe Thomas of Bradwardine.
Brissaeus: siehe Appendix 5.
Brockhaus: siehe Gauricus.
BRUYNE, E. DE.: Études d’esthétique médiévale, 3Bde., Brügge 1946.
BUDÉ, GUILLAUME: Annotationes in libros Pandectarum, Paris 1508.
BUSCA, GABRIELLO: L’architettura militare, Mailand 1619.
Callebat: siehe Vitruv.
Calvi, Fabio: siehe Vitruvio e Raffaello.
CAMPANELLA, TOMMASO DI: De sensu rerum et magicae libri quattuor, Frankfurt 1620.
CAPORALI, GIOVANNI BATTISTA: Architettura con il suo commento et figure. Vitruvio in volgar lingua raportato, Perugia 1536.
CARDANO, GIROLAMO: De subtilitate libri XXI, Nürnberg 1550.
Cardano: siehe auch Appendix 5.
CASSIODORUS SENATOR: Varia, PL69, Sp.501-880.
CATANEIO, GIROLAMO: Dell'arte militare libri tre, Brescia 1571.
CATANEIO, PIETRO: L'architettura, Venedig 1567.
CATO: De agri cultura.
Ccelio: siehe Ricchieri.
Cercc: siehe Androuet.
Cesariano: siehe auch Kinsky.
Chastel: siehe Gauricus.
Ciapponi: siehe auch Appendices 3 und 5.
CICERO: De inventione.
CICERO: De oratore.
CICERO: Orator.
CICERO: Tusculanae disputationes.
Codex Escurialensis: siehe Egger.

COLUMELLA, De re rustica.

COSTA, NONIUS A: De quadruplici hominis ortu libri quattuor, Padua 1594.

Crosby: siehe Thomas of Bradwardine.

Cusanus: siehe Nikolaus von Kues.

de la Mare: siehe Marc.

Diels: siehe Philon.

Dilly: siehe Kunstgeschichte.

DIO CHRYSTOSTOMOS: Orationes.

Dionysius von Fourna: siehe Denys de F.; Dionisio de F.; Hetherington.

Dolce, Lodovico: siehe Appendix 6.

Due milie anni di Vitruvio (Studi e documenti di architettura 8), Florenz 1978.

DURANTINO, FRANCESCO LUTIO: M.L. Vitruvio Pollione de architettura traducto di latino in volgare, Venedig 1524.

DÜRER, ALBRECHT: Vier Bücher von menschlicher Proportion, Nürnberg 1528.
Dürer: siehe auch Anzelewsky; Rupprich; Strauss.

Erizzo, Sebastiano: siehe Platon.

Escorial: siehe El Escorial.

EUKLID: Elementa.

Euklid: siehe auch Heath; Pacioli.

Fasola: siehe Piero della Francesca.

Fensterbusch: siehe Vitruv.

Ferri: siehe auch Plinius.

Festugiere: siehe Corpus hermeticum.

FICINO, MARSILIO: De vita libri tres, in: Ficino, Opera, Bd.1, fols.531-572.

FICINO, MARSILIO: In convivium Platonis de amore, Commentarium, in: Ficino, Opera, Bd.2, fols.1320-1363.

Ficino: siehe auch Plotin.

Fontana/Morachiello: siehe Vitruvio e Raffaello.

Francesco di Giorgio Martini: siehe auch Scaglia.

FRANCO, NICCOLO: Dialogo dove si ragiona delle bellezze, Venedig 1542.

FRISIUS, GEMMA: De radio astronomico & geometrico liber, Antwerpen 1545.

Frisno: siehe Appendix 5.

Funck: siehe Appendix 5.

GALEN: Ars medica, Venedig 1544.

GALEN: De historia philosophica liber spurius.

GALEN: De optima doctrina.

GALEN: De placitis Hippocratis et Platonis.

GALEN: De usu partium corporis humani.

GALIANI, BERNARDO: L’Architettura di M.Vitruvio Pollione, Neapel 1758.

Garin: siehe Pico.

GAURICUS, POMPONIUS: De sculptura, herausgegeben und übersetzt von Heinrich Brockhaus, Leipzig 1886.

Gellius: Noctes atticæ.

Georgius: siehe Giorgi.

Gerbert: Geometria, PL139, Sp.93-151.

Gesner, Conrad: siehe Appendix 5.

Ghiberti, Buonaccorso: siehe Scaglia.

Giocondo, Fra Giovanni: siehe Vitruv.

Giorgi, Francesco, Promptuarium rerum et theologiarum et philosophicorum, Paris 1563.

Giorgi, Francesco: De harmony mundi totius cantica tria, Venedig 1525.

Giorgio: siehe Francesco di Giorgio Martini.

Goldmann, Nicolaus: Vollständige Anweisung zu der Civil Bau Kunst, Wolfenbüttel, 1696.

Grande dizionario della lingua italiana: siehe Battaglia.

Grataldi, Francesco Mario: De partibus aedificationis, Parma 1494.

Guillaume de Saint-Thierry: De natura corporis et animae libri duo, PL180, Sp.695-720.

Harder: siehe Plotin.

Helmont, Franciscus Mercurius van: siehe Appendix 6.

HERMANN VON REICHENAU: De utilitatis astrolabii libri duo, PL143, Sp.389-412.

Hermes Trismegistos: siehe Corpus Hermeticum; Patrizzi.

HERON ALEXANDRINUS: Definitions.

HERON ALEXANDRINUS: Geometrica.

HERON ALEXANDRINUS: Stereometrica.

HILDEGARD VON BINGEN: Liber divinorum operum simplicis hominis, PL197, Sp.739-1038.

HRABANUS MAURUS: De universo libri XXII, PL111, Sp.9-614.

Hyginus: siehe Appendix 4.

ISIDOR VON SEVILLA: De natura rerum, PL83, Sp.963-1018.

ISIDOR VON SEVILLA: Etymologiarum libri XII, PL82; siehe auch Appendix 3.

Jöcher: siehe Appendix 5.

Jucundus, Fra: siehe Vitruv.

KLAIBER, H.: Leonardostudien, Straßburg 1907.

Klein: siehe auch Gauricus.

Kulturwissenschaftliche Bibliothek Warburg, Bericht: siehe Saxl/Bing.

LACTANTIUS: De opificio Dei vel formatione hominis, PL7, Sp.9-78.

LACTANTIUS: Divinarum institutionum libri septem, PL6, Sp.111-822.

Laurant: siehe Secret/Laurant.

Lechler, Lorenz: siehe Shelby.

Leonardo: siehe auch Keeler/Pedretti; Richter.

LIEBESCHUTZ, H.: Das allegorische Weltbild der Heiligen Hildegard von Bingen (Studien der Bibliothek Warburg 16), Leipzig/Berlin 1930.

LOMAZZO, GIANNI PAOLO: Idea del tempio della pittura, Mailand 1590.
Lomazzo: siehe auch Appendix 6.
Lommatsch: siehe Tobler/Lommatsch.
Longhair: siehe Howard/Longhair.
LORENZEN, E.: »Along the Line where the Columns are set.« Book 11, Kopenhagen 1970.
LOWIC, L.: The Meaning and Significance of the Human Analogy in Francesco di Giorgio's
LUDOVICI, S.: Cesare Cesarino, in: Dizionario biografico degli Italiani, Bd.24, Rom 1980,
S.172-180.
LUKIAN: Panthea [Ikones].
LUKOMSKI, G.K.: I maestri della architettura classica italiana, Mailand 1933.
MAFFEI, RAFFAELLO VOLATERRANO: Commentariorum urbanorum octo et triginta libri,
Paris 1515 (zuersi 1506).
MAHNKE, D.: Unendliche Sphäre und Allmittelpunkt. Beiträge zur Genealogie der
mathematischen Mystik, Halle/Saale 1937.
de musicologie 58.1972, S.162-175.
Malerbuch vom Berg Athos: siehe Dionysius von Fourn.
Mannasara, Architecture of, translated from original Sanscrit by Prasana Kumar Acharya, 5Bde.
ersch. 3], London/New York o.D. [1933-1934].
MANITIUS, M.: Beiträge zur Geschichte römischer Prosaiker, Solinus, in: Philologus 1.1889,
S.562-565.
MANITIUS, M.: Geschichte der lateinischen Literatur des Mittelalters (Handbuch der Alter-
MARCONI, P.: La ciadella come microcosmo, in:Quaderni dell’istituto di storia dell’archi-
MARE, PHILIBERT DE LA: De vita, moribus et scriptis Guillelmi Philandri Castilionii [...] epistola, o.O. 1667.
MARINELLI, S.: The Author of the Codex Huygens, in: Journal of the Warburg and Courtauld
Institutes 44.1981, S.214-220.
MAROTTI, F.: Storia documentaria del teatro italiano. Lo spettacolo dall’umanesimo al
manierismo, Mailand 1974.
MARTIANUS CAPELLA: De nuptiis Philologiae et Mercurii.
MARTIN, JEAN: Architectvre ov art de bien bastir de Marc Vitruve Pollion, Paris 1547.
MASI, M.: Boethian Number Theory. A Translation of the »De institutione arithmetica«,
Amsterdam 1983.
BIBLIOGRAPHIE

Mercuriale: siehe Appendix 5.

Mielke: siehe Anzelewsky/Mielke.

Mizauld, Antoine: Aesclapii et Vraniae medicum simul & astronomicum ex colloquio coniugium, harmoniam microcosmi cum macrocosmo siue humani corporis cum coelo, paucis figurans & perspicue demonstrans [...], Lyon 1550.

Morachiello: siehe Fontana/Morachiello.

Moreri: siehe Appendix 5.

Morf: siehe Appendix 5.

Müller-Strübing: siehe Rose.

Nauret, Ch. G.: Agrippa and the Crisis of Renaissance Thought, Urbana (Ill.) 1965.

Nock: siehe Corpus hermeticum.

Nouvelle biographie: siehe Biographie universelle.
Nowotny: siehe Agrippa.
Nussbaum: siehe Binding.
OVID: Metamorphosen.
PACIOLI, LUCA (Hrsg. und Komment.): Euclides megarensis philosophi [...] opera [...], Brescia 1509.
PACIOLI, LUCA: De divina proportione, Venedig 1509, in: Scritti rinascimentali, S.55-144.
PACIOLI, LUCA: De divina proportione, Venedig 1509.
PACIOLI, LUCA: Summa de arithmetica, geometria, proportioni et proportionalita, Venedig 1494.
Pacioli: siehe auch Crivelli.
PANOFSKY, E.: The Codex Huygens and Leonardo da Vinci’s Art Theory (Studies of the Warburg Institute 13), London 1940.
Papillon: siehe Appendix 5.
PATRIZZI, FRANCESCO: Magia philosophica, Hamburg 1593.
BIBLIOGRAPHIE

Pedretti: siehe auch Keele/Pedretti.

Philalēhæus, Lucullius: siehe Appendix 4.

PHILANDRIER, GUILLAUME: Annotationes in Vitruvium Pollionem quas ad Franciscum regem P. P. ac bonarum litterarum assertorem, Lyon 1552.

PHILANDRIER, GUILLAUME: Castigationes atque annotationes pauculae in XII libros institutionum M. Fabii Quintiliani, Lyon 1535.

PHILANDRIER, GUILLAUME: In decem libros M. Vitruvii Pollionis de architectura, Rom 1544.

PHILANDRIER, GUILLAUME: M. Vitruvii Pollionis de architectura libri decem, ad Caesarum Augustum, omnibus omnium editionibus longe emendatores, collatis veteribus exemplis, Lyon 1586.

Philon Byzantinus, Belopoeika: siehe auch Marsden.

PICO DELLA MIRANDOLA, GIOVANNI: Conclusiones, Genf 1973 (zuerst Rom 1486).

PL: siehe Patrologia latina.

PLATON: Republica.

PLATON: Timaeus.

Platon: siehe auch Cornford.

PLINIUS: Naturalis historia.

PLINIUS: Plinio il vecchio, Storia delle arti antiche. Testo, traduzione e note a cura di Silvio Ferri, Rom 1946.

BIBLIOGRAPHIE

POLLUX: Onomasticon.

Porta, Guglielmo della: siehe Gramberg.

Pseudo-Hermes: siehe Baeumker.

Raffael: siehe Vitruvio e Raffaello.

Reber: siehe Vitruv.

REUCHLIN, JOHANNES: De arte cabalistica, Hagenau 1517.

Rhidiginus: siehe Ricchieri.

RICCHIERI, LODOVICO CELIO: Lectionvm antiquarvm libri XXX, Basel 1542 (zuerst 1516).

Riccio: siehe Ricius.

RICIUS, PAULUS: In cabalistarum seu allegorizantium eruditionem isagogae, Augsburg 1515.

Rivius: siehe Ryff.

Roriczer, Mathes: siehe Shelby.

RÖTTINGER, H.: Die Holzschnitte zur Architektur und zum Vitruvius Teutsch des Walter Riviuss (Studien zur deutschen Kunstgeschichte 167), Straßburg 1914.

BIBLIOGRAPHIE

Ruscelli, Girolamo: siehe Plato.

RUSCONI, ANTONIO: Della architettura, Venedig 1590.

SAGREDO, DIEGO DE: Medidas del romano: necessarias aloes oficiales que quieren seguir las formaciones delas Basas/ Colunas/ Capiteles y otras piezas delos edificios antiguos, Toledo 1526 (Nachdruck Valencia 1976).

SAGREDO, DIEGO DE: Raison d'architecture, Paris 1539.

SAINT-MARTHE, SCÉVOLE DE: Gallorum doctrina illustrium [...] elogia, Poitiers 1602.

Salerno: siehe Battisti/Salerno.

SAUMAISE, CLAUDE DE: Pliniiana Exercitationes in Caji Julii Solini Polyhistora, Utrecht 1689 (zu erst 1629).

SAVONAROLA, MICHELE: Libellus de magnificis ornamentis regiae civitatis Paduae, in: L. Muratori, Rerum italicarum scriptores, Bd.24, Fasc.15, Bologna 1902.

SAVONAROLA, MICHELE: Speculum physionomiae, Paris, Bibliothèque Nationale, Ms.7357, fol.1r-67v.

Scaglia: siehe auch Francesco di Giorgio Martini; Prager/Scaglia.

Schanz/Hosius: siehe Appendix 3.

Schipperges: siehe Hildegard von Bingen.

SCHLIKKER, Hellenistische Vorstellungen von der Schönheit des Bauwerks nach Vitruv, Berlin 1940.

SCHLOSSER, J.v.: Leben und Meinungen des Florentinischen Bildhauers Lorenzo Ghiberti, München 1941.

SCHLOSSER, J.v.: Schriftenquellen zur Geschichte der karolingischen Kunst, Wien 1892.

Schmuttermayer, Hanns: siehe Shelby.

SCHÖN, ERHARD: Unanderweisung der proportzion und stellung der possen, Nürnberg 1542.

SCHOUTEN, J.: The Pentagram as a Medical Symbol, Nieuwkoop 1968.

Schramm: siehe Philon.

Scritti rinascimentali di architettura. A cura di A. Bruschi, C. Maltese etc. (Trattati di architettura 4), Mailand 1978.

SENCEA: Epistolae.

Seneca: siehe auch Scarpat.

SERVOLINI, L.: Jacopo de' Barbari, Padua 1944.

SOLINUS: Collectanea rerum memorabilium.

Soubiran: siehe Ruffel/Soubiran.

Stadler: siehe Albertus Magnus.

Tacciola, Mariano: siehe Prager/Scaglia.

Tafuri: siehe auch Foscari/Tafuri.

TANZER, H. E.: The Villas of Pliny the Younger, New York 1924.

Teissier: siehe Appendix 5.

Theoderich von St.Trond: siehe Appendix 3.

THEOPHRASTUS: Historia plantarum.

Thesaurus graecae linguae, 8Bde., Paris 1830-1865.

Thesaurus linguae latinae, 10Bde. [in Forts.], Leipzig 1900-1982.

THOMAS AQUINAS: In decem libros ethicorum Aristotelis ad Nichomachum expositio, Ed. Gillet/Pirolla, Turin 1934.

Thomas Aquinas: siehe auch Appendices 3 und 4.

Thomas of Bradwardine. His »Tractatus de Proportionibus«, edited and Translated by H. L. Crosby Jr., Madison (Wisc.) 1955.

THOU, JACQUES AUGUSTE: Historiarum sui temporibus tomas secundus, Paris 1616.

TOMMASEO, N./BELLINI, B.: Dizionario della lingua Italiana, 4Bde., Turin/Rom/Pisa/Neapel 1865-1879.

TORY, GEOFROY: Champflevry, Paris 1529.

VALLA, GIORGIO: De expetendi et fugiendi rebus opus, 2Bde., Venedig 1501.

VALVERDE, JOHANNES: Anatomia, Venedig 1589.

VARRO: De lingua latina.

VARRO: De re rustica.

VENUSTI, ANTONIO MARIA: Discorso generale, Venedig 1562.

VESALIUS, ANDREAS: De humani corporis fabrica libri septem, Basel 1543.

Villalpando, Juan Baptista: siehe Appendix 6.

VITRUV: De architectura, Oxford, Bodleian Library, Ms. Auct. F.5.7.

VITRUV: De architectura, Wolfenbüttel, Herzog August Bibliothek, Ms. Gudianus latinus 132.
BIBLIORAPHIE

VITRUV: De architecuta, Wolfenbüttel, Herzog August Bibliothek, Ms. Gudianus latinus 69.

VITRUV: L. Vitruvii Pollionis de Architector was libri decem, Florenz 1496.

VITRUV: L. Vitruvii Pollionis ad Cesarem Augustum de architector was libri decem, Rom o.D. [ca.1486].

VITRUV: L. Vitruvii Pollionis de Architector was libri decem, Venedig 1497.

VITRUV: M. Vitruvius per lucundum solito castigitor factus, cum figuris et tabula, ut iam legi et intelligi possit, Venedig 1511.

VITRUV: Vitruvius iterum et Frontinus a Jocundo revisi repurgatique quantum ex collatione licuit, Florenz 1513.

Vitr: siehe auch Cesariano; Durantino; Caporali, Ferri; Galiani; Martin; Müller/Strüb; Philandrier; Rose; Rusconi; Sangallo, Antonio da; Schneider; Urrea; Vitruvio e Raffaello.

Volateranus: siehe Maffeo.

Voss: siehe Appendix 5.

WALKER, D. P.: Spiritual and Demonic Magic. From Ficino to Campanella (Studies of the Warburg Institute 22), London 1958.

Warburg: siehe auch Göte; Kulturwissenschaftliche Bibliothek Warburg, Tagebuch; Vitruv (Reber).

WASER, CASPAR: De antiquis mensuris Hebraeorum, Heidelberg 1610.

Wasmuths Lexikon der Baukunst, 5Bde., Berlin 1929-1937.

WICKHOFF, F.: Dürers Studium nach der Antike, Innsbruck 1880 (Separatum der Mitteilungen des Instituts für österreichische Geschichtsforschung 1.1880, H.3).

Winterberg: siehe Piacioli.

WITTKOWER, RUDOLF: Architectural Principles in the Age of Humanism (Studies of the Warburg Institute 19), London 1949.

Wotton: siehe Appendix 5.

Yates: siehe auch Appendix 6.

Zahn, Johannes: siehe Appendix 6.

Zeilinger: siehe Büchner/Zeilinger.

Zorzi: siehe Giorgi.

Zugangskatalog: sich Warburg Institute.
ABBILDUNGSVERZEICHNIS

5. Mariano Taccola, Mann mit Maß, aus: De ingenieis, fol.36v.
6. Francesco di Giorgio Martini, Zeichnung zu Vitruv, De architectura 3.1., Florenz, Biblioteca Laurenziana, Codex Ashburnhamianus 361 fol.5r.
11. Albrecht Dürer, Proportionszeichnung, Dresdener Skizzenbuch, D.20, fol.105r.

ABBILDUNGSNACHWEIS. 1, 5, 6, 11, 17, 18, 19, 20, 21, 23, reproduziert aus den oben angegebenen Büchern; 2, 3, 4, 22, 24, London, Warburg Institute; 7, 8, 9, 10, Royal Library at Windsor Castle (by gracious permission of Her Majesty the Queen); 14, 15, 16, London, Conway Library, Courtauld Institute; 12, 13, 25, London, British Museum.
1. Leonardo, Proportionszeichnung.
2. Aby Warburg, Bilderatlas, Tafel »A«.
3. Aby Warburg, Bilderatlas, Tafel »B«.
4. Aby Warburg, Bilderatlas, Tafel »C«.
5. Taccola, Mann mit Maß.

6. Francesco di Giorgio, homo vitruvianus.

10. Leonardo, Proportionszeichnung, W.19132[27].
12. Dürer, homo vitruvianus.

17. Sagredo, Mann mit Maß.

18. Jean Goujon, *homo vitruvianus.*
HUMANI CORPORIS MENSURA ET AB EO OMNES SYMMETRIAS ERYTHMATAS & PROPORTIONATAS GEOMETRICO SCHEMATE INVENIRE VI ADEST FIGVR.

20. Cesariano, homo vitruvianus.
Aduncha si la natura ha così composito il corpo del uomo si come cò le proporzioni li membri di epo respondono a la figura efigiateau. Cum talìa sanque si uedeno hauer confuso quello; sicco che ancho ra in le perfectione de ciascun membro de le ope e le figure habiano a la liuer efigiateau la eaccion de la còmensurazione. Aduncha cò

23. Giocondo, *homo vitruvianus*.
